首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the effect of several bases, including sodium hydroxide, calcium hydroxide, barium hydroxide and hexamine ((CH2)6N4) on thermal stability of poly(vinyl butyral) (PVB). The characterization techniques used were visual colour comparison, thermogravimetric analysis (TG), infra-red spectroscopy, and UV-vis absorption spectra. Visual colour comparison and TG results showed that some acids or other substances that were easily oxidised into acids caused the degradation of PVB. However, PVB could be stabilized to different degrees by adding various bases. The infra-red spectra and UV-vis absorption spectra revealed that during the thermal degradation of PVB mixed with barium hydroxide and hexamine separately, the bases prevented the opening of the cyclic acetal ring and the production of conjugated groups which could cause the colour change.  相似文献   

2.
Dilation of poly(vinyl benzoate) and poly(vinyl butyral) accompanying sorption of carbon dioxide is measured with a cathetometer under pressures up to 50 atm at 25°C. Sorption isotherms for carbon dioxide in these polymers were also determined gravimetrically. Each dilation isotherm plotted versus pressure, as well as the sorption isotherm, showed an inflection point corresponding to the glass transition of the polymer-gas system. The dilation isotherms changed their form at that point from concave to convex to the pressure axis or to a straight line. Dilation and sorption isotherms exhibited time-dependent hysteresis below the inflection point but not above the point. Partial molar volumes of carbon dioxide in polymers, which were determined from dilation and sorption data above the point, were found to be independent of concentration and larger than those below the point. The latter volumes depended on concentration. Based upon the extended dual-mode sorption concept, which takes account of plasticization of polymer by sorbed gas, a dilation model was developed. Dilation data were described well by the model.  相似文献   

3.
The effect of several kinds of antioxidants on the stability of poly(vinyl butyral) (PVB) under air atmosphere is studied by thermogravimetry–differential scanning calorimetry method and kinetic analysis. After mixed with antioxidants, the thermal oxidative stability of PVB increases significantly, because the antioxidants could inhibit the oxidation of copolymer (stage I). The thermal oxidative stability increases in the following order: PVB < PVB/1010 < PVB/B215 < PVB/1098. However, the thermal oxidative degradation rate of PVB increases markedly after 320 °C, due to the loss of chemical activity for antioxidants gradually. The thermal stability of antioxidants increases in the following order: B215 < 1010 < 1098.  相似文献   

4.
This paper discusses the most important parameters in terms of fire hazard and shows how PVC fares in relation to other polymers. The fire properties specifically addressed are: ignitability, flammability, flame spread, rate and amount of heat release, mass loss rate, smoke release and toxicity. Hydrogen chloride decay is also commented on, because it affects the toxicity of PVC smoke. The individual parameter most relevant to fire hazard is heat release. The two most useful tools for measuring rate of heat release (viz. the OSU and Cone calorimeters) are described. Results obtained from them are discussed. Smoke can best be measured by combined parameters from rate of heat release calorimeters, rather than in the traditional static NBS smoke chamber. Toxic hazard is being addressed by recognition that most smokes are of similar toxicity, so that the mass loss rate will, generally, govern the toxicity of smoke. Not all fire tests are equally good representations of the probable consequences of a full-scale fire. Fire hazard assessment is best carried out based on those test results most relevant to real fires; they can be obtained from small and full-scale experiments and fire models. The fire performance of PVC is excellent; PVC products generally represent low fire hazard in a scenario.  相似文献   

5.
The miscibility of poly(viny1 alcohol)/poly(vinyl pyrrolidone) (PVA/PVP) blends is investigated by differential scanning calorimetry (DSC) and wide-angle x-ray diffraction (WAXD). The molecular orientation induced by uniaxial stretching of the blends is also examined by WAXD and birefringence measurements. It is shown by the DSC thermal analysis that the polymer pair is miscible, since a single glass transition temperature (Tg) is situated between the Tgs of the two homopolymers at every composition. The Tg versus composition curve does not follow a monotonic function but exhibits a cusp point at a PVP volume fraction of a little under 0.7, as in a case predicted by Kovacs' theory. The presence of a specific intermolecular interaction between the two polymers is suggested by an observed systematic depression in the melting point of the PVA component. A negative value of the polymer-polymer interaction parameter, χ12 = 0.35 (at 513 K), is estimated from a thermodynamic approach via a control experiment using samples crystallized isothermally at various temperatures. The extent of optical birefringence (Δn) of the drawn blends decreases drastically with increasing PVP content up to 80 wt %, when compared at a given draw ratio, and ultimately Δn is found to change from positive to negative at a critical PVP concentration of a little over 80 wt %. Discussion of the molecular orientation behavior takes into consideration a birefringence compensation effect in the miscible amorphous phase due to positive and negative contributions of oriented PVA and PVP, respectively.  相似文献   

6.
A crosslinked network was formed by the reaction of partially saponified poly(vinyl acetate) and toluylene diisocyanate in benzene. The yield of gel was markedly dependent on the degree of saponification and the concentrations of polymer and diisocyanate. Crosslinked poly(vinyl alcohol) was obtained by treating the poly(vinyl acetate) with a catalytic amount of sodium hydroxide in methanol without any change of the urethane crosslinks. The crosslink based on the urethane linkage was quantitatively cleaved by acids, especially by hydrobromic acid, releasing polymers of the same molecular weight as the original.  相似文献   

7.
Thermal degradation of poly(vinyl butyral) (PVB) and its mixtures with alumina, mullite and silica was investigated by non-isothermal thermogravimetry in the temperature range of 323 to 1273 K. The analysis of the data was carried out using a three-dimensional diffusion model. Results showed that the kinetic parameters (activation energy and pre-exponential factor) of the PVB degradation are different for polymer alone, and ceramic/polymer composites. The overall weighted mean apparent activation energy showed an increasing reactivity in the order of PVB<alumina+PVB<mullite+PVB<silica+PVB. This shows that the acidic and basic surface characteristics of the ceramics promote the thermal degradation of PVB and, the more acidic silica affects the degradation more than mullite and alumina. The effect of pellet compression pressure in the range of 4000 to 8000 psig is also investigated.  相似文献   

8.
Poly(vinyl chloride) (PVC) alone or mixed with 10 wt-% and 50 wt-% TiO2, SnO2, ZnO, and Al2O3 were pyrolyzed by using a pyrolysis gas chromatograph. Benzene, toluene, ethylbenzene, o-xylene, styrene, naphthalene, and various chlorobenzenes were identified. No hydrocarbons could be detected in pyrolysis products of any samples at 200°C. More aromatic hydrocarbons than aliphatic hydrocarbons are released from the PVC–TiO2 system and in preheated PVC. The contrary result is observed in the PVC–ZnO and PVC–SnO2 systems. Aromatics having methyl endgroups are easily released from the PVC–ZnO and PVC–SnO2 systems and at elevated pyrolysis temperature, because methylene groups are easily isolated along the chain by ZnO, SnO2 and the heating. The release of ethylbenzene o-xylene, and chlorobenzenes suggests a repeated dehydrochlorination and recombination of HCl and Cl2 to double bonds along the chain. Possible decomposition mechanisms of PVC are discussed.  相似文献   

9.
The second and fourth moments of the proton resonance line in stretched poly(vinyl alcohol) samples have been measured by a pulse technique. Their anisotropy has been analyzed at different elongation ratios λ. The use of the second and fourth moments gives an interesting cross-check on the reliability of the results. Despite the fact that the lattice sums required for absolute determination of the orientation cannot be calculated, coefficients related to the second and fourth moments of the orientation distribution function can be compared to the prediction of the quasiaffine orientation scheme for the crystalline phase and to the experimental values of the birefringence as a function of λ. It is shown that NMR clearly detects the onset of the orientation of the amorphous chains above λ ≈ 4.  相似文献   

10.
Miscibility of poly(4-vinyl pyridine) (P4VP) and poly(2-vinyl pyridine) (P2VP) with poly(viny acetate) (PVAc), poly(vinyl alcohol) PVA and poly(vinyl acetate-co-alcohol) (ACA copolymers) has been investigated over a wide composition range. Differentiaal scanning calorimetry (DSC) results indicate that P2VP is immiscible with PVAC, PVA, and their copolymers over the whole composition range. In turn, P4VP appears to be immiscible with PVAC and PVA, but miscible with some ACA copolymers in certain range of composition. The P4VP-ACA phase diagram for different copolymer compositions has been determined. The variation of the glass transition temperature with composition for miscible mixtures was found to follow the Gordon-Taylor equation, with the parameter κ dependent upon copolymer composition. FTIR analysis of blends reveal the existence of specific interactions via hydrogen bonding between hydroxyl groups and the nitrogen of the pyridinic ring, which appear to be decisive for miscibility. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
UV-sensitive indicators based on dyed poly(vinyl butyral) (PVB) containing acid-sensitive dye (bromophenol blue, BPB) and chloral hydrate have been developed and used successfully to measure the integrated UV irradiance. This flexible film changes colour from blue to green and finally to yellow on exposure to UV irradiation. The radiation-induced change in colour was analysed spectrophotometrically at the absorption band maxima of 421 and 601 nm. The film responds faithfully to UVA, UVB and UVC radiation, showing a maximum sensitivity at 200 nm. Correlations were established between the incident energy of UV radiation and the change in absorbance of BPB/PVB films at 421 and 601 nm using irradiation wavelengths of 248.5, 298.8 and 366 nm. The assessment of the uncertainties, the effect of the irradiation wavelength and chloral hydrate concentration on the performance of BPB/PVB films and the post-irradiation stability in different storage conditions were investigated.  相似文献   

12.
The thermal stability of PVB and five VB-MA copolymers with different compositions was studied by thermogravimetric analysis in dynamic nitrogen. The reactivity ratios of the copolymers were determined by using NMR techniques. It was found that r1(VB) = 0.5 ± 0.1 and r2(MA) = 7.3 ± 0.3. The stability of VB increases as the MA concentration in the copolymer compositions increases. Apparently, the formation of lactone and anhydride structures has a stabilizing effect. The stability imparted to the degrading copolymers by lactone and anhydride structures is insufficient to produce stability comparable to that of PMA itself.  相似文献   

13.
Polyaniline (PANi) composite nanofibers were deposited on surface acoustic wave (SAW) resonator with a central frequency of 433 MHz to construct humidity sensors. Electrospun nanofibers of poly(methyl methacrylate), poly(vinyl pyrrolidone), poly(ethylene oxide), poly(vinylidene fluoride), poly(vinyl butyral) (PVB) were characterized by scanning electron microscopy, and humidity response of corresponding SAW humidity sensors were investigated. The results indicated that PVB was suitable as a matrix to form nanofibers with PANi by electrospinning (ES). Electrospun PANi/PVB nanofibers exhibited a core–sheath structure as revealed by transmittance electron microscopy. Effects of ES collection time on humidity response of SAW sensor based on PANi/PVB nanofibers were examined at room temperature. The composite nanofiber sensor exhibited very high sensitivity of ∼75 kHz/%RH from 20 to 90%RH, ultrafast response (1 s and 2 s for humidification and desiccation, respectively) and good sensing linearity. Furthermore, the sensor could detect humidity as low as 0.5%RH, suggesting its potentials for low humidity detection. Attempts were done to explain the attractive humidity sensing performance of the sensor by considering conductivity, hydrophilicity, viscoelasticity and morphology of the polymer composite nanofibers.  相似文献   

14.
Significant effort has been made in the past by many workers to investigate the mechanism of thermal decomposition of poly(vinyl chloride) (PVC). The presence and role of free radicals has been controversial in this regard. Our data on PVC and chlorinated PVC systems demonstrate the existence of macroradicals in the early stage of thermal decomposition under inert and oxidative atmospheres. Data from conventional thermogravimetric experiments are used in conjunction with the electron spin resonance findings.  相似文献   

15.
We observed that weakly and strongly rubbed polyvinyl-cinnamate surfaces align liquid crystal films perpendicular and parallel to the rubbing direction, respectively. Surface-specific sum-frequency vibrational spectroscopy was used to probe molecular orientations and alignments of the rubbed surfaces and provide a molecular-level understanding of the observation.  相似文献   

16.
A direct microscopic observation procedure was used to study the processes of deformation and shrinkage of poly(vinyl chloride) above its glass transition temperature. Prior to stretching or contraction of the polymer, its surface was decorated with a thin (10–15 nm) metal layer. As a result of subsequent deformation (shrinkage), the decoration underwent structural rearrangements, which were detected by means of direct microscopic examination. These rearrangements contain information on the mechanism of deformation of the polymer substrate. In particular, the procedure makes it possible to characterize the process of development of the interface in the polymer during deformation and the reverse process of interface contraction during the shrinkage of the material. It was found that, in the case of an increase in the interfacial area, its growth is accompanied by a growth in imperfection of the polymer surface layer. These defects can concentrate mechanical stress, thus strongly affecting the fragmentation of the metal decoration on the polymer surface. It was shown that the surface defects could be eliminated by annealing of the polymer above its glass transition temperature. The introduction of a plasticizer that decreases the glass transition temperature below the deformation temperature likewise prevents the development of these defects during an increase in the surface area of the polymer in the process of its inelastic deformation.  相似文献   

17.
A series of poly(N-isopropylacrylamide-co-acrylamide) copolymers with N-isopropylacrylamide (NIPAM) to acrylamide (AM) ratios varying from 95/05 to 10/90 was synthesized and surface tensions, cloud point temperatures, and enthalpies of phase separation were measured. At 25°C, 1 wt % poly(N-isopropylacrylamide) homopolymer has a surface tension of 41.8 mJ/m2. Incorporation of AM moieties in the copolymer increased surface tension approaching the limiting value of 65.3 mJ/m2 which was obtained for polyacrylamide solutions. The surface tension values of copolymer solutions were predicted from the surface tensions of the homopolymers applied to a one-parameter model analogous to the Margules model for the excess free energy of mixing. Heats of phase separation for the copolymer were less than expected compared with PNIPAM homopolymer. It was proposed that NIPAM moieties directly bonded to acrylamide did not contribute to the enthalpy of phase separation. Finally, surface tension lowering kinetics were slower above the cloud point temperatures because at high temperatures the copolymers were present as colloidally dispersed particles which had to diffuse to the air/water interface, unwrap, and spread to give an adsorbed monolayer. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2137–2143, 1999  相似文献   

18.
19.
Various methods of determining polymeric molecular compatibility were applied to blends of poly(vinyl chloride) (PVC) and poly(ethylene-co-vinyl acetate-co-sulfur dioxide) (E/VA/SO2). In one series, where the E/VA/SO2 had a mole composition of 72.7/18.5/8.8, true compatible blends were demonstrated by phase-contrast microscopy, torsion pendulum studies, and differential scanning calorimetry experiments for blends containing up to 40% E/VA/SO2. These blends exhibited a single Tg whose compositional variation was found to follow the Fox expression. Experimental densities were slightly greater than predicted on assuming volume additivity. This observation implies better packing and a negative heat of mixing and thus is in harmony with a negative free energy of mixing and the observed molecular compatibility.  相似文献   

20.
During the emulsion polymerization of vinyl acetate (VAc) using poly(vinyl alcohol) (PVA) as stabilizer and potassium persulfate as initiator, the VAc reacts with PVA forming PVA-graft-PVAc. When the grafted polymer reaches a critical size it becomes water-insoluble and precipitates from the aqueous phase contributing to the formation of polymer particles. Since particle formation and therefore the properties of the final latex will depend on the degree of grafting, it is important to quantify and to characterize the grafted PVA. In this work, the quantitative separation and characterization of the grafted water-insoluble PVA was carried out by a two-step selective solubilization of the PVAc latex, first with acetonitrile to separate PVAc homopolymer, followed by water to separate the water-soluble PVA from the remaining acetonitrile-insoluble material. After the separation, the water-soluble and water-insoluble PVA were characterized by Fourier Transform Infrared (FTIR) spectroscopy and 1H and 13C nuclear magnetic resonance (NMR) analyses, from which the details of the PVA-graft-PVAc structure were obtained. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号