共查询到20条相似文献,搜索用时 15 毫秒
1.
Xin-Liang Li·De-Xun Fu·Yan-Wen Ma·Xian Liang LHD Institute of Mechanics Chinese Academy of Sciences Beijing China LNM China 《Acta Mechanica Sinica》2010,26(6):795-806
This paper reviews the authors' recent studies on compressible turbulence by using direct numerical simulation (DNS),including DNS of isotropic(decaying) turbulence, turbulent mixing-layer,turbulent boundary-layer and shock/boundary-layer interaction.Turbulence statistics, compressibility effects,turbulent kinetic energy budget and coherent structures are studied based on the DNS data.The mechanism of sound source in turbulent flows is also analyzed. It shows that DNS is a powerful tool for the mechanistic study of compressible turbulence. 相似文献
2.
The marker‐density‐function (MDF) method has been developed to conduct direct numerical simulation (DNS) for bubbly flows. The method is applied to turbulent bubbly channel flows to elucidate the interaction between bubbles and wall turbulence. The simulation is designed to clarify the structure of the turbulent boundary layer containing microbubbles and the mechanism of frictional drag reduction. It is deduced from the numerical tests that the interaction between bubbles and wall turbulence depends on the Weber and Froude numbers. The reduction of the frictional resistance on the wall is attained and its mechanism is explained from the modulation of the three‐dimensional structure of the turbulent flow. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
3.
Periodic wall oscillations in the spanwise or circumferential direction can greatly reduce the friction drag in turbulent channel and pipe flows. In a concentric annulus, the constant rotation of the inner cylinder can intensify turbulence fluctuations and enhance skin friction due to centrifugal instabilities. In the present study, the effects of the periodic oscillation of the inner wall on turbulent flows through concentric annulus are investigated by the direct numerical simulation (DNS). The radius ratio of the inner to the outer cylinders is 0.1, and the Reynolds number is 2 225 based on the bulk mean velocity Um and the half annulus gap H. The influence of oscillation period is considered. It is found that for short-period oscillations, the Stokes layer formed by the circumferential wall movement can effectively inhibit the near-wall coherent motions and lead to skin friction reduction, while for long-period oscillations, the centrifugal instability has enough time to develop and generate new vortices, resulting in the enhancement of turbulence intensity and skin friction. 相似文献
4.
Direct numerical simulations (DNS) of incompressible turbulent channel flows coupled with Lagrangian particle tracking are performed to study the characteristics of ejections that surround solid particles. The behavior of particles in dilute turbulent channel flows, without particle collisions and without feedback of particles on the carrier fluid, is studied using high Reynolds number DNS (Re = 12,500). The results show that particles moving away from the wall are surrounded by ejections, confirming previous studies on this issue. A threshold value separating ejections with only upward moving particles is established. When normalized by the square root of the Stokes number and the square of the friction velocity, the threshold profiles follow the same qualitative trends, for all the parameters tested in this study, in the range of the experiments. When compared to suspension thresholds proposed by other studies in the Shields diagram, our simulations predict a much larger value because of the measure used to characterize the fluid and the criterion chosen to decide whether particles are influenced by the surrounding fluid. However, for intermediate particle Reynolds numbers, the threshold proposed here is in fair agreement with the theoretical criterion proposed by Bagnold (1966) [Bagnold, R., 1966. Geological Survey Professional Paper, vol. 422-1]. Nevertheless, further studies will be conducted to understand the normalization of the threshold. 相似文献
5.
气固两相流中颗粒弥散的拉格朗日模拟 总被引:2,自引:1,他引:1
本文提出了一种对于均匀,稳定及各向同性气固两相紊流场中圆形固体颗粒弥散的拉格朗日模拟计算方法,应用该方法对带有网栅的垂直与水平管道中均匀,稳定的气固两相流模拟计算结果与Snyder及Wells等人所做的相同情况下的试验结果进行了比较,以证明该模拟计算方法的有效性,。 相似文献
6.
7.
A. Ugo Piomelli B. Lawrence Ong C. James Wallace D. Faouzi Ladhari 《Applied Scientific Research》1993,51(1-2):365-370
Experimental measurements in a boundary layer and a large-eddy simulation of plane channel flow have been used to study the dynamics of vorticity and mass transport in the nearwall region. It was found that Reynolds stress generation occurs in the vicinity of quasi-streamwise vortices, and that smoke particles tend to be ejected from the wall near these vortical structures. 相似文献
8.
湍流和多相流是流体力学中最具挑战性的两个主题,湍流多相流的实验和数值模拟更是一项艰巨的挑战。此外,对颗粒干沉积方面的多相流、多尺度、多物理耦合特征的风沙流的综合实地观测仍然很少。因此,本文综合考虑湍流、多相流与多物理耦合等方面,采用以圆柱为干扰物产生对流涡流的强制干扰技术,以塔克拉玛干沙漠地带中和田至若羌铁路的过沙桥桥墩为研究背景。为摆脱有限元软件中由网格大变形或失真引起的各种问题,采用SPH方法的宏观界面追踪和微观单点追踪相结合的方式,初步揭示了以单相对流涡流为风场背景的含沙多相流环境下的圆柱周围复杂的流场变化以及对颗粒干沉积运动的影响。采用数值模拟与现场实验相结合的方式,着重对计算域边界壁面和圆柱壁面对空气单相流中对流涡流的成形运动及其特征分析、两相流中对流涡流在圆柱周围的夹沙运动模拟及其特性分析、两相流中对流涡流的夹沙率以及边界壁湍流对沙粒干沉积效率展开分析研究。 相似文献
9.
Differential and algebraic models are constructed for the dispersed-phase turbulent stresses and heat fluxes and for the mixed moments of the velocity and temperature fluctuations in the continuous and dispersed phases. The models are based on a kinetic equation for the joint probability density of the particle velocity and temperature in an anisotropic turbulent flow. The results are compared with the available direct numerical simulation (DNS) data. 相似文献
10.
To investigate the behaviour of inter-particle collision and its effects on particle dispersion, direct numerical simulation of a three-dimensional two-phase turbulent jet was conducted. The finite volume method and the fractional-step projection algorithm were used to solve the governing equations of the gas phase fluid and the Lagrangian method was applied to trace the particles. The deterministic hard-sphere model was used to describe the inter-particle collision. In order to allow an analysis of inter-particle collisions independent of the effect of particles on the flow, two-way coupling was neglected. The inter-particle collision occurs frequently in the local regions with higher particle concentration of the flow field. Under the influence of the local accumulation and the turbulent transport effects, the variation of the average inter-particle collision number with the Stokes number takes on a complex non-linear relationship. The particle distribution is more uniform as a result of inter-particle collisions, and the lateral and the spanwise dispersion of the particles considering inter-particle collision also increase. Furthermore, for the case of particles with the Rosin–Rammler distribution (the medial particle size is set d50 = 36.7 μm), the collision number is significantly larger than that of the particles at the Stokes number of 10, and their effects on calculated results are also more significant. 相似文献
11.
Axel E. Larreteguy Juan M. Gimenez Norberto M. Nigro Francisco M. Sívori Sergio R. Idelsohn 《国际流体数值方法杂志》2023,95(1):44-80
It is well known that the inherent three-dimensional and unsteady nature of turbulent flows is a stumbling block for all approaches aimed at resolving their spatial and temporal variability. The pseudo-direct numerical simulation (P-DNS) method for turbulent flows, proposed by the authors in a previous publication, focused on resolving the spatial variability, leaving the task of solving the temporal evolution to a highly simplified, parameter dependent model, to be adjusted in a case by case basis. Although some auspicious results were obtained, the applicability of P-DNS for problems of industrial interest required a more sophisticated method to deal with the temporal variability. In this sense, the present work proposes a new, parameter free, data-driven memory model for P-DNS. The model is based on the study of off-line DNS solutions of turbulent flows transitioning between statistically steady states in simple domains. The new P-DNS model is tested and successfully compared against existing methods in selected three-dimensional turbulent flows. 相似文献
12.
13.
A direct numerical simulation technique based on two‐way coupling is presented to study a particle‐laden, decaying isotropic turbulent flow. Physical characteristics of turbulence modulation because of the mono‐dispersed (i.e., particles with single Stokes number) and poly‐dispersed particles (i.e., particles with more than one Stokes number) were investigated. A scale dependent effective viscosity that summarizes the aspects of the interaction between the velocity field and particles is defined in the study. Particles of Stokes number (St) 3.2,6.4 and 12.8 were used in performing the simulations. Poly‐dispersed particles were acquired by mixing particles of two different Stokes numbers at a time. As a whole, decay of turbulence because of the poly‐dispersed particles is observed to be larger than that of the decay of turbulence because of the mono‐dispersed particles. Simulations of poly‐dispersed particle indicate nonlinear characteristics in the modification of the temporal evolution of turbulence energy and dissipation. The scale dependent effective viscosity, which correlates with the energy spectrum plot, indicates that the decay of turbulence is mostly observed at the intermediate scales of turbulence. The effective viscosity for the simulations of the poly‐dispersed particles was calculated to be higher than that of the simulations of the mono‐dispersed particles. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
14.
湍流加速火焰的三维数值模拟 总被引:2,自引:0,他引:2
火焰在设有障碍物的管内传播时会自身加速,并可能导致爆炸。本文基于湍流κ-ε模型和改进的EBU—Arrhenius反应模型,对该现象进行了三维空间的数值模拟。计算结果反映了障碍物、湍流和火焰之间相互作用的正反馈机理,描绘了火焰在管内加速传播的三维图像。 相似文献
15.
An immersed boundary/wall modeling method for RANS simulation of compressible turbulent flows 下载免费PDF全文
In this paper, an immersed boundary (IB) method is developed to simulate compressible turbulent flows governed by the Reynolds‐averaged Navier‐Stokes equations. The flow variables at the IB nodes (interior nodes in the immediate vicinity of the solid wall) are evaluated via linear interpolation in the normal direction to close the discrete form of the governing equations. An adaptive wall function and a 2‐layer wall model are introduced to reduce the near‐wall mesh density required by the high resolution of the turbulent boundary layers. The wall shear stress modified by the wall modeling technique and the no‐penetration condition are enforced to evaluate the velocity at an IB node. The pressure and temperature at an IB node are obtained via the local simplified momentum equation and the Crocco‐Busemann relation, respectively. The SST k ? ω and S‐A turbulence models are adopted in the framework of the present IB approach. For the Shear‐Stress Transport (SST) k ? ω model, analytical solutions in near‐wall region are utilized to enforce the boundary conditions of the turbulence equations and evaluate the turbulence variables at an IB node. For the S‐A model, the turbulence variable at an IB node is calculated by using the near‐wall profile of the eddy viscosity. In order to validate the present IB approach, numerical experiments for compressible turbulent flows over stationary and moving bodies have been performed. The predictions show good agreements with the referenced experimental data and numerical results. 相似文献
16.
J. G. M. Eggels J. Westerweel F. T. M. Nieuwstadt R. J. Adrian 《Applied Scientific Research》1993,51(1-2):319-324
Fully developed turbulent pipe flow at low Re-number is studied by means of direct numerical simulation (DNS). In contrast to many previous DNS's of turbulent flows in rectangular geometries, the present DNS code, developed for a cylindrical geometry, is based on the finite volume technique rather than being based on a spectral method. The statistical results are compared with experimental data obtained with two different experimental techniques. The agreement between numerical and experimental results is found to be good which indicates that the present DNS code is suited for this kind of numerical simulations. 相似文献
17.
18.
Three dimensional large eddy simulation (LES) is performed in the investigation of stably stratified turbulence with a sharp thermal interface. Main results are focused on the turbulent characteristic scale, statistical properties, transport properties, and temporal and spatial evolution of the scalar field. Results show that the buoyancy scale increases first, and then goes to a certain constant value. The stronger the mean shear, the larger the buoyancy scale. The overturning scale increases with the flow, and the mean shear improves the overturning scale. The flatness factor of temperature departs from the Gaussian distribution in a fairly large region, and its statistical properties are clearly different from those of the velocity fluctuations in strong stratified cases. Turbulent mixing starts from small scale motions, and then extends to large scale motions. 相似文献
19.
Direct numerical simulations of 2D driven cavity flows have been performed. The simulations exhibit that the flow converges to a periodically oscillating state at Re=11,000, and reveal that the dynamics is chaotic at Re=22,000. The dimension of the attractor and the Kolmogorov entropy have been computed. Explicit time-integration techniques are discussed. 相似文献
20.
The distribution and motion of inertial particles in plane turbulent wall jet are investigated using direct numerical simulation, under the assumption of one-way coupling. To our knowledge, this appears to be the first direct numerical simulation of a particle-laden plane turbulent wall jet. It is shown that, in outer part of the wall jet, the behaviour of particles closely resembles that of a free plane jet. Due to the streamwise decay of particle Stokes number, the particle streaks formed in the near wall region of the wall jet are characterized by their intensity variation, which differs significantly from those in the channel flow. The streamwise growth of the particle velocity half-width is approximately equal to that of the fluid velocity half-width and the maximum velocity of particles decays slower than that of fluid due to inertia. The outer scaling can collapse the mean particle velocity in both the inner and outer region for heavier particles. In the buffer region, the particle–fluid velocity difference can be negative or positive depending on the Stokes number since there are two competing effects, namely the memory effect and turbophoresis. In the viscous region, the larger particles are on average faster than fluid and the velocity difference is found to be self-similar depending on outer Stokes number. The near-wall distribution of velocity difference is significantly correlated with the presence of high-momentum particles which are entrained by vortical structures generated in the outer region of the wall jet. These results are useful for environmental and engineering applications. 相似文献