首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To clarify the advantages of Cr:Nd:YAG ceramics rods in solar-pumped lasers, a fused silica light guide with rectangular cross-section is coupled to a compound V-shaped cavity within which a 7 mm diameter 0.1 at.% Cr:1.0 at.% Nd:YAG ceramic rod is uniformly pumped. The highly concentrated solar radiation at the focal spot of a 2 m diameter stationary parabolic mirror is transformed into a uniform pump radiation by the light guide. Efficient pump light absorption is achieved by pumping uniformly the ceramic rod within the V-shaped cavity. Optimum pumping parameters and solar laser output powers are found through ZEMAX© non-sequential ray-tracing and LASCAD© laser cavity analysis codes. 33.6 W continuous-wave laser power is measured, corresponding to 1.32 times enhancement over our previous results with a 4 mm diameter Nd:YAG single-crystal rod. High slope efficiency of 2.6 % is also registered. The solar laser output performances of both the ceramic and the single-crystal rods are finally compared, revealing the relative advantage of the Cr:Nd:YAG rod in conversion efficiency. Low scattering coefficient of 0.0018 cm?1 is deduced for the ceramic rod. Heat load is considered as a key factor affecting the ceramic laser output performance.  相似文献   

2.
Transparent Nd:YAG ceramics were produced by solid.state reaction of high.purity (4N) nanometric oxides powders, i.e., Al2O3, Y2O3 and Nd2O3. After sintering, mean grain sizes of 2% Nd:YAG samples were about 20 μm and their transparency were a bit worse than that of 0.9% Nd:YAG single crystal. Two types of active elements: rods and slabs were fabricated and characterized in several diode pumping schemes. In end pumping configuration as a pump source 20.W fiber coupled laser diode operating in low duty cycle regime (1 ms pump duration/20 Hz) was deployed. In the best case, 3.7 W of output power for 18 W of absorbed pump power, M2 < 1.4 were demonstrated for uncoated ceramics Nd:YAG rod of ϕ 4×3mm size in preliminary experiments. For the ceramics of two times lower Nd dopant level above 30% slope efficiency was achieved. In case of Nd:YAG ceramic slab side pumped by 600.W laser diode stack above 12 W was demonstrated with slope efficiency of 3.5%.  相似文献   

3.
We demonstrate a diode-laser-pumped solid-state 1.06 μm laser using a novel YAG/Nd:YAG/YAG composite ceramics with a sandwich structure. We optimize the laser performance using different output couplers, pumping beam waists, and cavity lengths. A maximum CW output power of 11 W for the YAG/Nd:YAG/YAG-ceramic laser is obtained at an absorbed pump power of 25 W resulting in a slope efficiency of 49.4%. The excellent output performance shows that the novel YAG/Nd:YAG/YAGceramic material has a great potential in applications with diode-laser pumping.  相似文献   

4.
Well-dispersed Nd:Y2O3 powders with uniform particle size of about 60 nm were synthesized from freeze-dried precursors. Highly transparent 2 at.% Nd:YAG ceramics were fabricated from the as-synthesized Nd:Y2O3 powders and commercial Al2O3 powders by vacuum sintering at 1,750 °C for 5 h. Phase evolution, microstructures, and spectroscopic properties of the Nd:YAG transparent ceramics were investigated. Freeze-drying played an important role in the synthesis of high-quality Nd:Y2O3 nanosized powders, which were essential for the fabrication of highly transparent Nd:YAG ceramics. Optical transmittance of a 3-mm thick sample reached 82% in the wavelength range of 200–900 nm. 5.23 W output power was obtained with 14.3 W diode laser pumping, giving a slope efficiency of 36.5%.  相似文献   

5.
Optical properties of Cr,Yb:YAG, Cr,Nd:YAG crystals, and composite Yb:YAG/Cr:YAG ceramics self-Q-switched solid-state laser materials are presented. The merits of these self-Q-switched laser materials are given and the potentials of such lasers can be chosen by the applications. Cr,Yb:YAG and composite Yb:YAG/Cr:YAG ceramics self-Q-switched laser are conducted. Although several tens of kW peak power can be obtained with a monolithic microchip Cr,Yb:YAG laser, the experimental results show that the performance of this laser is limited by the absorption of Cr4+ ions at a pump wavelength of 940 nm and strong fluorescence quenching at high Cr concentration. Composite Yb:YAG/Cr:YAG ceramics are more suitable to realize high pulse energy and peak power (up to MW level) with optimized lasing and Q-switching parts. In addition, the instabilities induced by the multi-longitudinal mode competition in Cr,Nd:YAG and Cr,Yb:YAG microchip lasers are addressed. The different gain bandwidths of Yb:YAG and Nd:YAG play an important role in the instability of the output laser pulse trains. Stable laser pulses from the Cr,Yb:YAG microchip laser were obtained due to the antiphase dynamics. For the Cr,Nd:YAG microchip laser, the instability caused by the multi-longitudinal mode competition is an intrinsic property. Different transverse patterns were observed in Cr,Nd:YAG microchip lasers when a pump beam with larger diameter was used. Saturated inversion population distribution inside the gain medium plays an important role in the transverse pattern formation. Different transverse patterns were reconstructed by combining different sets of the Hermite-Gaussian modes.  相似文献   

6.
Laser pulses generated in a laser oscillator were amplified by Nd/Cr:YAG ceramic amplifiers. The saturation of output-laser energy was experimentally observed. We found that the stimulated emission cross-section of Nd/Cr:YAG ceramics was effectively increased and the saturation fluence was effectively reduced to 0.1 J/cm2 due to the energy transfer between excited Cr and Nd ions. The output-laser energy we calculated was compared with the experimental ones and the extractable stored energy in the Nd/Cr:YAG ceramics was evaluated. This laser material is suitable for high-repetition-rate operations because of the high laser gain with low pumping intensity and low effective saturation fluence.  相似文献   

7.
Thermal dependence on the small signal gain of Nd/Cr:YAG (yttrium aluminum garnet) ceramics was observed experimentally. Usually, Nd:YAG crystal and ceramics have remarkable gain reduction when optical pumping is performed and the temperature of the laser media is upped to 373 K. A CW laser light generated in a 1064 nm Nd:YAG laser oscillator was amplified by Nd/Cr:YAG ceramic amplifier, and the output power was measured at non-saturation level. Laser small signal gain of the ceramic disk was kept to 470 K. This property was remarkably different from one of Nd:YAG crystals or ceramics. The peak shift of the fluorescence was observed experimentally when the temperature is high.  相似文献   

8.
The concept of an Active mirror with transparent Nd/Cr:YAG ceramics is proposed. A new ceramic material pumped by an arc-metal-halide lamp has been experimentally implemented. CW-laser light generated in a 1064 nm Nd:YAG micro-tip oscillator was amplified by an Active mirror made of Nd/Cr:YAG ceramic and pumped by CW arc-lamp light. The saturation power density of the Nd/Cr:YAG ceramic was lower than that of Nd:YAG because the stimulated-cross-section and lifetime were effectively enhanced by the sensitization of Cr ions. The maximum output laser power while keeping spatial beam quality was up to 3 W with an input lamp power of 9 W; the resulting optical-optical conversion efficiency of 33% was close to the theoretical prediction of nearly 50%.  相似文献   

9.
We report the high efficiency of solar pumped laser. The sunlight is concentrated by the concentrator system, which is composed by the Fresnel lens and the cone-channel condenser. The power density of sunlight concentrated by the concentrator system surpasses the lasing threshold for pumping laser. In the experiment, the sunlight concentrated is coupled into the conical chamber pumping Nd:YAG laser media. Laser output of 3.5 W has been achieved; the collect efficiency is 3.5 W/m2. The conversion efficiency is 1.0% from solar power into laser, and the slope efficiency is achieved 1.86%.  相似文献   

10.
Solar-pumped solid-state lasers are promising for renewable extreme-temperature material processing. Here we report a large improvement in solar laser beam brightness by pumping a thin Nd:YAG single crystal rod. A fused silica light guide of 14 mm×22 mm rectangular cross-section is used to both transmit and homogenize the concentrated solar radiation from the focal zone of a 2.88 m2 parabolic mirror to the entrance aperture of a modified 2D-CPC flooded pump cavity, within which a 4 mm diameter rod is efficiently pumped. 2.2% slope efficiency is reached. Laser beam brightness figure of merit B is three times higher than that of the most recent solar-pumped Nd:YAG laser by a Fresnel lens. The introduction of the rectangular cross-section light guide has also ensured a much more stable laser emission than previous pumping schemes.  相似文献   

11.
太阳光泵浦激光器直接利用太阳光作为泵浦源,实现了太阳光能量到激光能量的直接转化。设计了分腔水冷型金属锥形泵浦腔,以直径8mm,长115mm的Nd:YAG晶体棒作为激光工作物质,用有效面积1.03m2菲涅尔透镜会聚太阳光,实验获得了23.7 W的稳定激光输出,斜效率为7.87%。通过对比实验,改进后的分腔水冷型太阳光泵浦激光器较原有锥形腔激光器有55.92%的激光输出功率提升。分别从侧面泵浦光在冷却水中的吸收损耗以及其耦合效率等方面对新型腔体结构进行了分析,证实了分腔水冷型腔体结构对侧面泵浦效率的提高,并提出了陶瓷漫反射材质的分腔水冷型激光腔的设计。  相似文献   

12.
High power continuous wave operation of a diode face-pumped thin Nd:YAG slab laser is reported. A novel pumping geometry for a thin Nd:YAG slab using cylindrical lens duct coupled diode laser stacks is demonstrated. In a close-coupled resonator, a maximum laser output power of 260 W in multimode operation is obtained. This corresponds to a slope efficiency of 34% and an optical-to-optical efficiency of 27%, respectively. In high-brightness operation, a polarized laser output of 70 W has been obtained with a beam quality factor close to 4 in both directions. The polarization contrast ratio is >100. PACS 42.55.Xi; 42.60.Pk; 42.60.By  相似文献   

13.
Room-temperature laser action from Cr(2+)-doped Cd(0.85)Mn(0.15)Te has been demonstrated for what is believed to be the first time. We achieved pulsed laser operation centered at ~2.5mu m by pumping into the mid-infrared absorption band of Cr(2+) ions by use of the 1.907- mum output of a H(2) Raman-shifted Nd:YAG laser. The output of the free-running Cr(2+):Cd(0.85)Mn(0.15)Te laser had a width of ~50 nm (FWHM), and the slope efficiency was calculated to be 5.5% under nonoptimum conditions.  相似文献   

14.
Optical properties and highly efficient laser oscillation of Nd:YAG ceramics   总被引:19,自引:0,他引:19  
Optical absorption, emission spectra have been measured for polycrystalline Nd-doped Y3Al5O12 ceramics. Fluorescence lifetimes of 257.6 μs, 237.6 μs, 184.2 μs and 95.6 μs have been obtained for 0.6%, 1%, 2% and 4% neodymium-doped YAG ceramics, respectively. For the first time, highly efficient laser oscillation at 1064 nm has been obtained with this kind of ceramics. Slope efficiency of 53% has been achieved on a uncoated 4.8-mm thick 1% Nd:YAG ceramics sample. Optical to optical conversion efficiency is 47.6%. Laser oscillation has also been obtained with a 2% Nd:YAG ceramics. The optical properties and laser output results have been compared with that of Nd:YAG single crystal grown by the Czochralski method. Almost identical results have been achieved including laser experiments results. But fabrication of Nd:YAG ceramics is much easier compared to the single-crystal growth method. And also large size (now of about 400 mm diameter×5 mm is available) and high-concentration (>1%) Nd:YAG ceramics can be fabricated. The results show that this kind of Nd:YAG ceramics is a very good alternative to Nd:YAG single crystal. Received: 20 April 2000 / Published online: 16 August 2000  相似文献   

15.
报道了LD侧面泵浦Nd∶YAG/S-KTP腔内倍频高功率660nm连续红光激光器。泵浦组件(呈三角形等间距分布)由9个20W的激光二极管组成,最大泵浦功率为180W。通过对谐振腔参数进行优化设计,用LD连续抽运3mm×65mm Nd∶YAG激光棒时,获得了波长为1319nm的基频光振荡。利用S-KTP II类临界相位匹配腔内倍频技术,当泵浦电流为22A时,获得了6.8W的连续红光激光输出,光-光转换效率为4.3%。  相似文献   

16.
刘欢  王巍  巩马理 《物理学报》2013,62(14):144205-144205
报道了一种适合中小功率输出的全固态激光器的角抽运方法, 抽运光从板条激光器中板条晶体的角部入射, 可获得较高的抽运效率和较好的抽运均匀性.采用单角抽运方式, 首次进行了角抽运Nd:YAG复合板条946 nm连续运转激光器的实验研究. 激光腔采用紧凑型平凹直腔结构, 腔长仅为20 mm. 当注入抽运功率为50 W时, 946 nm激光连续输出功率最高达5.29 W, 光光转换效率为10.6%, 斜效率为12%. 整台激光器结构紧凑, 调谐简单, 成本低, 具有广阔的应用前景. 关键词: 角抽运 Nd:YAG晶体 连续波 946 nm激光  相似文献   

17.
Diffusion bonded Nd:YAG/Cr:YAG composite laser crystal has been employed to perform a compact diode-pumped passively Q-switched laser. At the incident pump power of 3.3 W and pulse repetition rate of 16.3 kHz, the maximum average output of 592 mW has been obtained, corresponding to an optical-to-optical conversion efficiency of 18%. Stable passively Q-switched operation with peak power of 6.5 kW and pulse duration of 6 ns was also achieved. It has been experimentally revealed that Nd:host/Cr:YAG composite structure is a promising material for compact cost-effective Q-switched laser sources with high-peak power and short pulse duration. In addition, thermal lens effect (TLE) in the active medium and its impact on the Q-switched laser performance have been analyzed.  相似文献   

18.
Laser emission in the 0.94-, 1.06- and 1.34-micron ranges in diluted and concentrated Nd:YAG crystals longitudinally pumped by a 885-nm diode laser on the 4 I 9/24 F 3/2 transition is investigated. Continuous-wave operation at watt level in all these wavelength ranges is demonstrated with a 1.0-at. % Nd:YAG crystal; however, the laser performance is impeded by the low pump absorption efficiency. Improved output power and overall efficiency were obtained with a highly doped 2.5-at. % Nd:YAG crystal: 5.5 W at 1.06 μm and 3.8 W at 1.34 μm with 0.38 and 0.26 efficiencies, respectively. Comparative results with traditional pumping at 809 nm into the highly absorbing 4 F 5/2 level are presented, showing the advantage of the direct 4 F 3/2 pumping. The influence of the lasing wavelength and of the Nd concentration on the thermal effects induced by the optical pumping in the laser material is discussed. A clear relation between the heat generated in the Nd:YAG crystals in lasing and non-lasing regimes, a function of the Nd doping, is demonstrated. PACS 42.55.Rz; 42.60.By; 42.60.Da  相似文献   

19.
We present a compact passively q-switched diode end pumped Nd:YAG laser at 1064 nm for 2D micromachining. It consists of a 5.5 cm long plano-concave end pumped resonator carrying a Cr:YAG passive q-switch inside the cavity. With an optical conversion efficiency of 46 and 33% the laser emits 1.4 W in CW and 986 mW in q-switched mode at a current of 2.5 A. After using a 2 mm circular aperture the output is seen in TEM00 mode with a single pulse energy of 5 mJ. The laser produced circular holes of diameter 75 μm in 25 μm thick Tantalum foils. Actual results of 1D and 2D machining are shown along with the diffraction patters of the samples.  相似文献   

20.
A new concept of a superpowerful femtosecond laser based on CPA in polycrystalline chromium doped ceramics (Cr:YAG, Cr:YSGG, etc.) pumped by a Nd:glass laser is proposed. In contrast to amplifiers in available petawatt laser systems (neodymium glass, titanium-doped sapphire, and parametric amplifiers with a DKDP crystal), these ceramics combine three key favorable properties: a large gain bandwidth to amplify chirped pulses with less than 20-fs durations, a wide aperture to amplify chirped pulses to the multikilojoule level, and a high conversion efficiency of narrowband Nd:glass laser pulses into chirped pulses. These properties open up the opportunity to create a unique laser with a peak power of 100 PW at a 10-kJ pump power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号