首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytochrome P450 enzymes represent an important class of heme-containing enzymes. There is considerable interest in immobilizing these enzymes on a surface so that interactions between a single enzyme and other species can be studied with respect to electron transfer, homodimer or heterodimer interactions, or for construction of biological-based chips for standardizing cytochrome P450 metabolism or for high-throughput screening of pharmaceutical agents. Previous studies have generally immobilized P450 enzymes in a matrix or on a surface. Here, we have attached CYP2C9 to gold substrates such that the resulting construct maintains the ability to bind and metabolize substrates in the presence of NADPH and cytochrome P450 reductase. The activity of these chips is directly dependent upon the linkers used to attach CYP2C9 and to the presence of key molecules in the active site during enzyme attachment. A novel method to detect substrate-enzyme binding, namely, superconducting quantum interference device (SQUID) magnetometry, was used to monitor the binding of substrates. Most significantly, conditions that allow measurable CYP2C9 metabolism to occur have been developed.  相似文献   

2.
A novel structure-based approach for site of metabolism prediction has been developed. This knowledge-based method consists of three steps: (1) generation of possible metabolites, (2) docking the predicted metabolites to the CYP binding site and (3) selection of the most probable metabolites based on their complementarity to the binding site. As a proof of concept we evaluated our method by using MetabolExpert for metabolite generation and Glide for docking into the binding site of the CYP2C9 crystal structure. Our method could identify the correct metabolite among the three best-ranked compounds in 69% of the cases. The predictive power of our knowledge-based method was compared to that achieved by substrate docking and two alternative literature approaches.  相似文献   

3.
Cytochrome P450 2C9 (CYP2C9) is one of the most important isoforms in human liver involved in the metabolism of a large number of therapeutic agents. The aim of this paper is to demonstrate the applicability of CE for the determination of the enzymatic activity of CYP2C9 with diclofenac as a probe substrate. MEKC with SDS as a pseudostationary phase was used for this purpose. Compared to other assays, the MEKC-based method is rapid, can be automated and requires only a small quantity of enzymes and substrate. Moreover, the enzymatic reaction can be monitored with high sensitivity and repeatability even when the reaction mixture is used for the analysis without any pretreatment. The kinetic study on the given enzymatic reaction was also performed since the basic characterization of drug biotransformation generally begins with the enzyme kinetic analysis of metabolite formation. As a result, the Michaelis constant and maximum reaction velocity were evaluated, the values 3.44 +/- 0.45 microM and 19.78 +/- 0.76 nmol min(-1) nmol(-1), respectively, were in agreement with the literature data. On the other hand, a slight deviation from typical Michaelis-Menten kinetics with a weak positive cooperativity was found at diclofenac concentrations below 2 microM. The same atypical kinetic behavior of CYP2C9 was also observed by other authors.  相似文献   

4.
The mechanism of benzene hydroxylation was investigated in the realistic enzyme environment of the human CYP 2C9 by using quantum mechanical/molecular mechanical (QM/MM) calculations of the whole reaction profile using the B3LYP method to describe the QM region. The calculated QM/MM barriers for addition of the active species Compound I to benzene are consistent with experimental rate constants for benzene metabolism in CYP 2E1. In contrast to gas-phase model calculations, our results suggest that competing side-on and face-on geometries of arene addition may both occur in the case of aromatic ring oxidation in cytochrome P450s. QM/MM profiles for three different rearrangement pathways of the initially formed sigma-adduct, leading to formation of epoxide, ketone, and an N-protonated porphyrin species, were calculated. Our results suggest that epoxide and ketone products form with comparable ease in the face-on pathway, whereas epoxide formation is preferred in the side-on pathway. Additionally, rearrangement to the N-protonated porphyrin species was found to be competitive with side-on epoxide formation. This suggests that overall, the competition between formation of epoxide and phenol final products in P450 oxidation of aromatic substrates is quite finely balanced.  相似文献   

5.
Quantitative structure–activity relationships (QSAR) methods are urgently needed for predicting ADME/T (absorption, distribution, metabolism, excretion and toxicity) properties to select lead compounds for optimization at the early stage of drug discovery, and to screen drug candidates for clinical trials. Use of suitable QSAR models ultimately results in lesser time-cost and lower attrition rate during drug discovery and development. In the case of ADME/T parameters, drug metabolism is a key determinant of metabolic stability, drug–drug interactions, and drug toxicity. QSAR models for predicting drug metabolism have undergone significant advances recently. However, most of the models used lack sufficient interpretability and offer poor predictability for novel drugs. In this review, we describe some considerations to be taken into account by QSAR for modeling drug metabolism, such as the accuracy/consistency of the entire data set, representation and diversity of the training and test sets, and variable selection. We also describe some novel statistical techniques (ensemble methods, multivariate adaptive regression splines and graph machines), which are not yet used frequently to develop QSAR models for drug metabolism. Subsequently, rational recommendations for developing predictable and interpretable QSAR models are made. Finally, the recent advances in QSAR models for cytochrome P450-mediated drug metabolism prediction, including in vivo hepatic clearance, in vitro metabolic stability, inhibitors and substrates of cytochrome P450 families, are briefly summarized.  相似文献   

6.
Cytochrome P450 2C9 (CYP2C9) is a membrane-anchored human microsomal protein involved in the drug metabolism in liver. CYP2C9 consists of an N-terminal transmembrane anchor and a catalytic cytoplasmic domain. While the structure of the catalytic domain is well-known from X-ray experiments, the complete structure and its incorporation into the membrane remains unsolved. We constructed an atomistic model of complete CYP2C9 in a dioleoylphosphatidylcholine membrane and evolved it by molecular dynamics simulations in explicit water on a 100+ ns time-scale. The model agrees well with known experimental data about membrane positioning of cytochromes P450. The entry to the substrate access channel is proposed to be facing the membrane interior while the exit of the product egress channel is situated above the interface pointing toward the water phase. The positions of openings of the substrate access and product egress channels correspond to free energy minima of CYP2C9 substrate ibuprofen and its metabolite in the membrane, respectively.  相似文献   

7.
Medetomidine is a potent and selective α2‐adrenergic agonist. The activation of α2‐adrenergic receptor mediates a variety of effects including sedation, analgesia, relief of anxiety, vasoconstriction and bradycardia. However, our main interest is the sedative effects of medetomidine when used as a premedicant prior surgery in companion animals, especially in dogs. Recently, data suggested that following intravenous infusion at six dosing regiments non‐linear pharmacokinetics was observed. Major causes of non‐linear pharmacokinetics are the elimination of the drug not following a simple first‐order kinetics and/or the elimination half‐life changing due to saturation of an enzyme system. The goal of this study was to establish the metabolic stability and determine the metabolic pathway of medetomidine in dog liver microsomes. Consequently, Michaelis–Menten parameters (Vmax, Km), T1/2 and CLi were determined. The incubations were performed in a microcentrifuge tube and containing various concentrations of medetomidine (10–5000 nm ), 1 mg/mL of microsomal proteins suspended in 0.1 m phosphate buffer, pH 7.4. Microsomal suspensions were preincubated with NADPH (1 mm ) for 5 min at 37°C prior to fortification with medetomidine. Samples were taken at various time points for kinetic information and the initial velocity (vi) was determined after 10 min incubation. The reaction was stopped by the addition of an internal standard solution (100 ng/mL of dextrometorphan in acetone). Medetomidine concentrations were determined using a selective and sensitive HPLC‐ESI/MS/MS method. Using non‐linear regression, we determined a Km value of 577 nm , indicating relatively low threshold enzyme saturation consistent with previous in vivo observation. The metabolic stability was determined at a concentration of 100 nm (?Km) and the observed T1/2 was 90 min with a CLi of 0.008 mL/min indicating moderately low clearance in dog liver microsomes, also consistent with previous in vivo data. Moreover, results suggest that principally medetomidine is metabolized by the CYP3A with a small contribution from CYP2D and CYP2E. The participation of CYP3A is an important discovery since medetomidine is used as a premedicant in combination with fentanyl, ketamine and/or midazolam. These findings combined with a low Km value may indicate that medetomidine can competitively inhibit the metabolism of these drugs and consequently significantly impair metabolic clearance. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The concepts of drug development have evolved over the last few decades. Although number of novel chemical entitities belonging to varied classes have made it to the market, the process of drug development is challenging, intertwined as it is with complexities and uncertainities. The intention of this article is to provide a comprehensive review of novel chemical entities (NCEs) that are substrates to cytochrome P450 (CYP) 2D6 isozyme. Topics covered in this review aim: (1) to provide a framework of the importance of CYP2D6 isozyme in the biotransformation of NCEs as stand-alones and/or in conjunction with other CYP isozymes; (2) to provide several case studies of drug disposition of important drug substrates, (3) to cover key analytical perspectives and key assay considerations to assess the role and involvement of CYP2D6, and (4) to elaborate some important considerations from the development point of view. Additionally, wherever applicable, special emphasis is provided on chiral drug substrates in the various subsections of the review.  相似文献   

9.
10.
11.
The cytochrome P450 (CYP) superfamily plays a key role in the oxidative metabolism of a wide range of exogenous chemicals. CYP2C8 is the principal enzyme responsible for the metabolism of the anti-cancer drug paclitaxel in the human liver, and carries out the oxidative metabolism of at least 5% of clinical drugs. Polymorphisms in CYP2C8 have been closely implicated in individualized medication. CYP2C8.3, a common polymorph of CYP2C8 with dual amino acid substitutions R139K and K399R, is found primarily in Caucasians. In this study, CYP2C8.3 and its wild type (WT) CYP2C8 were expressed in E. coli, and their purified proteins were characterized by UV-visible spectroscopy, mass spectrometry, and circular dichroism. Their thermal stability, substrate binding ability, and metabolic activity against paclitaxel were investigated. The electron transfer kinetics during paclitaxel metabolism by WT CYP2C8 or CYP2C8.3 was studied by stopped-flow kinetics. The results revealed that mutations in CYP2C8.3 did not greatly influence the heme active site or protein thermal stability and paclitaxel binding ability, but the metabolic activity against paclitaxel was significantly depressed to just 11% of that of WT CYP2C8. Electron transfer from CYP reductase to CYP2C8.3 was found to be significantly slower than that to WT CYP2C8 during catalysis, and this might be the main reason for the depressed metabolic activity. Since the polymorph CYP2C8.3 is defective in catalyzing substrates of CYP2C8 in vitro, it might be expected to have important clinical and pathophysiological consequences in homozygous individuals, and this study provides valuable information in this aspect.  相似文献   

12.
Cytochrome P450 (CYP) is deeply involved in the metabolism of chemicals including pharmaceuticals. Therefore, polymorphisms of this enzyme have been widely studied to avoid unfavorable side effects of drugs in chemotherapy. In this work, we performed computational analysis of the mechanism of the decrease in enzymatic activity for three typical polymorphisms in CYP 2C9 species: *2, *3, and *5. Based on the equilibrated structure obtained by molecular dynamics simulation, the volume of the binding pocket and the fluctuation of amino residues responsible for substrate holding were compared between the wild type and the three variants. Further docking simulation was carried out to evaluate the appropriateness of the binding pocket to accommodate substrate chemicals. Every polymorphic variant was suggested to be inferior to the wild type in enzymatic ability from the structural viewpoint. F‐G helices were obviously displaced outward in CYP2C9*2. Expansion of the binding pocket, especially the space near F′ helix, was remarkable in CYP2C9*3. Disappearance of the hydrogen bond between K helix and β4 loop was observed in CYP2C9*5. The reduction of catalytic activity of those variants can be explained from the deformation of the binding pocket and the consequent change in binding mode of substrate chemicals. The computational approach is effective for predicting the enzymatic activity of polymorphic variants of CYP. This prediction will be helpful for advanced drug design because calculations forecast unexpected change in drug efficacy for individuals. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

13.
14.
细胞色素P450超级家族在代谢众多的外源性化学物质方面发挥重要的作用.细胞色素P4502C8是人体肝脏中主要负责代谢抗癌药物紫杉醇的酶,它至少负责代谢5%的临床药物.细胞色素P450 2C8的基因多态性与用药个体化有着密切的关系.CYP2C8.3是常见的P450 2C8的基因多态之一,其发生了双点突变,分别是R139K...  相似文献   

15.
Statistical learning methods have been used in developing filters for predicting inhibitors of two P450 isoenzymes, CYP3A4 and CYP2D6. This work explores the use of different statistical learning methods for predicting inhibitors of these enzymes and an additional P450 enzyme, CYP2C9, and the substrates of the three P450 isoenzymes. Two consensus support vector machine (CSVM) methods, "positive majority" (PM-CSVM) and "positive probability" (PP-CSVM), were used in this work. These methods were first tested for the prediction of inhibitors of CYP3A4 and CYP2D6 by using a significantly higher number of inhibitors and noninhibitors than that used in earlier studies. They were then applied to the prediction of inhibitors of CYP2C9 and substrates of the three enzymes. Both methods predict inhibitors of CYP3A4 and CYP2D6 at a similar level of accuracy as those of earlier studies. For classification of inhibitors of CYP2C9, the best CSVM method gives an accuracy of 88.9% for inhibitors and 96.3% for noninhibitors. The accuracies for classification of substrates and nonsubstrates of CYP3A4, CYP2D6, and CYP2C9 are 98.2 and 90.9%, 96.6 and 94.4%, and 85.7 and 98.8%, respectively. Both CSVM methods are potentially useful as filters for predicting inhibitors and substrates of P450 isoenzymes. These methods generally give better accuracies than single SVM classification systems, and the performance of the PP-CSVM method is slightly better than that of the PM-CSVM method.  相似文献   

16.
17.
In view of the fact that several studies have shown that diclofenac hydroxylation by cytochrome P450 2C9 deviated from Michaelis–Menten kinetics at low substrate concentrations, sweeping combined with MEKC was applied for the kinetic study of this pharmacologically important reaction. A 50 μm fused silica capillary (56 cm effective length) was used to carry out all separations. 70 mM SDS in 20 mM phosphate 20 mM tetraborate buffer, pH 8.6, was used as the BGE. Injection was accomplished by the application of 50 mbar (5 kPa) pressure to the sample vial for 52 s. Separation was performed at 22 kV (positive polarity), with a capillary temperature of 25°C and detection at 200 nm. The higher sensitivity of the sweeping‐MEKC combination compared with the simple MEKC method enabled this reaction to be fitted to a Hill kinetic model and confirmed the findings of other authors. A Michaelis constant of 2.91±0.10 μM, maximum reaction velocity of 9.16±0.16 nmol/min/nmol and Hill coefficient of 1.66±0.08 were determined. This value of Hill coefficient confirms the presence of a positive cooperativity at low diclofenac concentrations and supports the hypothesis of two substrates binding at or near the active site.  相似文献   

18.
Artocarpin isolated from an agricultural plant Artocarpus communis has shows anti‐inflammation and anticancer activities. In this study, we utilized recombinant human UDP‐glucuronosyltransferasesupersomes (UGTs) and human liver microsomes to explore its inhibitory effect on UGTs and cytochrome p450 enzymes (CYPs). Chemical inhibition studies and screening assays with recombinant human CYPs were used to identify if CYP isoform is involved in artocarpin metabolism. Artocarpin showed strong inhibition against UGT1A3, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2B7, CYP2C8 and CYP3A4. In particular, artocarpin exhibited competitive inhibition against CYP3A4 and noncompetitive inhibition against UGT1A3 and UGT1A7. The half inhibition concentration values for CYP3A4, UGT1A3 and UGT1A7 were 4.67, 3.82 and 4.82 μm , and the inhibition kinetic parameters for them were 0.78, 2.67 and 3.14 μm , respectively. After artocarpin was incubated in human liver microsomes and determined by HPLC, we observed its main metabolites (M1 and M2). In addition, we proved that CYP2D6 played the key role in the biotransformation of artocarpin in human liver microsomes. The result of molecular docking further confirmed that artocarpin interacted with CYP2D6, CYP2C8 and CYP3A4 through hydrogen bonds. This study provided preliminary results for further research on artocarpin or artocarpin‐containing herbs.  相似文献   

19.
20.
In the lead optimization process, medicinal chemists must consider various chemical properties of active compounds, including ADME/Tox properties, and find the best compromise among these. This study presents a novel data mining method for multiobjective optimization of chemical properties, which consists of the hierarchical classification and visualization of multidimensional data. A hierarchical classification tree model is generated by an extension of recursive partitioning that utilizes averaged information gains for multiple objective variables as a quality-of-split criterion. All the hierarchically structured data objects are represented using a large-scale data visualization technique. The technique is an extension of HeiankyoView, which displays data objects as colored icons and group nodes as rectangular borders. Each icon is divided into subregions with different colors, so that it can present multidimensional data according to brightness of the colors. The proposed method was applied to the structure-activity relationship analysis for cytochrome P450 (CYP) substrates. The substrate specificity of six CYP isoforms was successfully delineated: e.g., CYP2C9 substrates are anionic compounds, while CYP2D6 substrates are cationic; and CYP2E1 substrates are smaller compounds, while CYP3A4 substrates are larger compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号