首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solubility behavior of O-methyl cellulose (MC) in water was investigated in terms of the distribution of substituents along the cellulose chain as well as in the anhydroglucose (AHG) units. For this purpose, three different types of MC samples were prepared by respective homogeneous reaction, i.e.. (i) methylation of cellulose acetate (CA) prepared from cellulose triacetate (CTA), followed by deacetylation, (ii) methylation of CA prepared by direct acetylation of cellulose in a 10% LiCl–dimethylacetamide (DMAc) solution, followed by deacetylation, and (iii) methylation of cellulose with dimethyl sulfate in a 10% LiCl–DMAc solution. Their water solubility was compared with that of MC samples prepared by the alkali cellulose process, i.e., by the heterogeneous reaction, including commercial products. It was found that water-soluble MC samples prepared by the alkali cellulose process exhibit a thermally-reversible sol-gel transition in aqueous solution, but all of the MC samples preapred homogeneous reactions show a normal phase separation in aqueous solution. This result gives a direct support for the consideration that the highly substituted glucose sequences present in the commercial MC act as “crosslinking loci” on warming. The distribution of substituents in the AHG units was estimated by 13C-NMR method. The results on the water solubility of MC were also discussed in terms of the distribution of substituents in the AHG units.  相似文献   

2.
An NMR method for determining the distribution of acetyl groups in cellulose acetates was developed. Treatment of cellulose acetates with acetyl-d3 chloride gave products having simple spectra which could be analyzed quantitatively to give the distribution of acetyl groups in the original sample. The method was applied to studying (1) the hydrolysis of cellulose triacetate with ammonia, (2) the acetylation of cellulose acetate with acetyl chloride, and (3) the acetylation of cellulose acetate with acetic anhydride.  相似文献   

3.
The benefits of applying cellulose selective enzymes as analytical tools for chemical structure characterization of cellulose derivatives have been frequently addressed over the years. In a recent study the high selectivity of cellulase Cel45A from Trichoderma reesei (Tr Cel45A) was utilized for relating the chemical structure to the flow properties of carboxymethyl cellulose (CMC). However, in order to take full advantage of the enzymatic hydrolysis the enzyme selectivity on the cellulose substrate must be further investigated. Therefore, the selectivity of Tr Cel45A on CMC was studied by chemical sample preparation of the enzyme products followed by mass spectrometric chemical structure characterization. The results strongly suggest that, in accordance with recent studies, also this highly selective endoglucanase is able to catalyze hydrolysis of glucosidic bonds adjacent to mono-substituted anhydroglucose units (AGUs). Furthermore, the results also indicate that substituents on the nearby AGUs will affect the hydrolysis.  相似文献   

4.
Dioxouranium [UO2(VI)] complexes with three degrees of substitution of cellulose acetate, prepared from viscose pulp (DS = 2.2, 2.45 and 2.86), have been synthesis and characterized. Degree of substitution (DS) is defined as the average number of CH groups substituted on each anhydrocellulose repeat unit. Probable structures of the cellulose acetate complexes were inferred from the elemental analysis data, conductance measurements, IR, electronic and 1H NMR spectra. The results obtained show that the formula of UO2(VI) complex with cellulose acetate of DS = 2.2 and 2.45 [(CA)4.UO2] is more probable than [(CA)2.UO2].2(CH3COO), while the reverse is true for the case of a UO2 complex with CA of DS = 2.86. For the former formula, cellulose acetate acts as a uni-negatively charged bidentate ligand and reacts with UO22+ through the ether-carbon-oxygen of the secondary acetylated hydroxyl group of the anhydroglucose unit and the oxygen atom of the residual secondary unacetylated hydroxyl group, forming a five-membered chelate ring. For the later formula, cellulose acetate of DS = 2.86 acts as a neutral bidentate chelating agent through the two ether oxygen atoms of the vicinal ester groups of secondary acetylated hydroxyl groups in anhydroglucose units also forming a five-membered chelate ring. The uranium atom in these complexes is 8-coordinate. The thermal behaviour of cellulose diacetate (DS = 2.2) and cellulose triacetate (DS = 2.86) and their complexes with uranyl acetate in nitrogen atmosphere has been also studied by differential thermal analysis from room temperature to 600 °C. The obtained DTA curves were analyzed using the Prout-Tompkins law. The method of least squares was applied to estimate the appropriate order of the reaction (n), and consequently the thermodynamic parameters. The results revealed that chelation of cellulose acetate with uranyl acetate led to increased thermal stability.  相似文献   

5.
High purity cellulose from wood is an important raw material for many applications such as cellulosic fibers, films or the manufacture of various cellulose acetate products. Hitherto, multi-step refining processes are needed for an efficient hemicellulose removal, most of them suffering from severe cellulose losses. Recently, a novel method for producing high purity cellulose from bleached paper grade birch kraft pulp was presented. In this so called IONCELL process, hemicelluloses are extracted by an ionic liquid–water mixture and both fractions can be recovered without yield losses or polymer degradation. Herein, it is demonstrated that bleached Eucalyptus urograndis kraft pulp can be refined to high purity acetate grade pulp via the IONCELL process. The hemicellulose content could be reduced from initial 16.6 to 2.4 wt% while persevering the cellulose I crystal form by using an optimized 1-ethyl-3-methylimidazolium dimethylphosphate-water mixture as the extraction medium. The degree of polymerization was then reduced by a sulfuric acid treatment for subsequent acetylation of the pulp, resulting in a final hemicellulose content of 2.2 wt%. When pre-treating the pulp enzymatically with endoxylanase, the final hemicellulose content could be reduced even to 1.7 wt%. For comparison, the eucalyptus kraft pulp was also subjected to cold caustic extraction and the same subsequent acid treatment which led to 3.9 wt% of residual hemicelluloses. The performance in acetylation of all produced pulps was tested and compared to commercial acetate grade pulp. The endoxylanase-IONCELL-treated pulp showed superior properties. Thus, an ecologically and economically efficient alternative for the production of highest value cellulose pulp is presented.  相似文献   

6.

Abstract  

The ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc) is considered to be an inert solvent of cellulose and lignocellulosic biomass. Acetylation (1.7% mol, or DS 0.017) of cellulose after dissolution in technical grade [C2mim]OAc (150 °C for 20 min), is demonstrated by compositional analysis, FTIR analysis and 13C NMR spectroscopy (in [C2mim]OAc with 13C enriched acetate). This acetylation, in the absence of added acylating agents, has not been reported before and may limit [C2mim]OAc utility in industrial scale biomass processing, even at this low extent. For example, cellulose acetylation may contribute to IL loss in processes where the IL is recovered and reused and inhibit enzyme saccharification of cellulose in lignocellulosic biofuel production processes based on saccharification and fermentation.  相似文献   

7.
Cellulose acetylation has been reported as a side reaction of cellulose treatment with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIm][OAc]) (Karatzos et al. in Cellulose 19:307–312, 2012) and other 1,3-dialkylimidazolium acetate ionic liquids. 1-Acetylimidazole (AcIm), an [EMIm][OAc] impurity, has been found to be the actual acetylating agent (Zweckmair et al. in Cellulose 22:3583–3596, 2015), and the degree of acetylation was relatively low, below a DS of approx. 0.1%. Higher degrees of cellulose acetylation (DS > 10%) have been observed when the entire wood was mixed with [EMIm][OAc] instead of cellulosic pulp only (Abushammala et al. in Carbohydr Polym 134:609–616, 2015). In this paper, we explore the impact of wood constituents, mainly lignin, on cellulose acetylation using AcIm. The results demonstrate that lignin itself can be readily acetylated upon mixing with AcIm, and—noteworthy—that lignin presence significantly accelerates cellulose acetylation. The initial rate of cellulose acetylation by AcIm increased from 1.8 to 4.7%/h when only 1% of lignin, based on cellulose mass, was added. A mechanistic study employing cellulose and lignin model compounds showed lignin to be more susceptible to acetylation than cellulose and to act as an intermediate acetyl group source for further cellulose acetylation in a catalytic scenario.  相似文献   

8.
An ultrastructural study of the acetylation of cellulose was achieved by subjecting well characterized cellulose samples fromValonia cell wall and tunicin tests to homogeneous and heterogeneous acetylation. The study involved transmission electron microscopy observations on negatively stained microcrystals as well as diffraction contrast images of the cross sections of wall fragments at various stages of the reaction. These observations showed that the acetylation of crystalline cellulose proceeds by a reduction of the diameters of the crystals while their lengths are reduced to a lower extent. These results were corroborated by electron and X-ray diffraction experiments that showed that during the reaction there was a rapid decrease in the intensities of the equatorial diffraction spots of cellulose, whereas those located on the meridian or close to the meridian stayed constant. A model of acetylation of the cellulose crystal is presented. It is based on a non swelling reaction mechanism that affects only the cellulose chains located at the crystal surface. In the case of homogeneous acetylation, the partially acetylated molecules are sucked into the acetylating medium as soon as they are sufficiently soluble. In heterogeneous conditions the cellulose acetate remains insoluble and surrounds the crystalline core of unreacted cellulose.  相似文献   

9.
Cellulosic derivatives (cellulose acetate, cellulose propionate and cellulose acetate-butyrate) as membranes, were prepared in different ways. These were then characterised by differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and contact angle evaluation. Subsequently, catalase (H2O2:H2O2 oxireductase; EC 1.11.1.6), alcohol oxidase (Alcohol:oxygen oxireductase; EC 1.1.3.13) and glucose oxidase (-D- Glucose:oxygen 1-oxireductase; EC 1.1.3.4) were covalently linked to these membranes. The catalytic activity and stability of these enzymes, when immobilised, were examined. The results obtained showed that the immobilisation efficiency and the stability of the coupled enzymes could be correlated with the studied properties of the supports. The cellulose acetate membrane which was prepared by evaporation gave the more active conjugate support-enzyme. Membranes prepared by the immersion technique were more crystalline and therefore less suitable for enzyme immobilisation. The highly hydrophobic membranes, obtained from the propionate and the butyrate esters of cellulose reduced the activities but gave better storage stability.  相似文献   

10.
Carbamoylation of cellulose esters (CE) and investigation of the mixed derivatives obtained with NMR spectroscopy represents a useful analytical tool for the determination of the degree of substitution (DS) and analysis of the distribution of substituents on the level of the anhydroglucose unit (AGU). Especially the carbethoxymethylcarbamoylation and the ethylcarbamoylation of CE combined with 1H NMR spectroscopy are efficient and inexpensive ways to gain information on the over-all DS and partial DS values in position 2, 3, and 6 of the AGU. Complete subsequent phenylcarbamoylation can be achieved even for CE with bulky substituents, e.g., adamantanecarboxylic acid esters. In addition to NMR experiments the carbamoylated CE were studied by HPLC after complete chain degradation. Carbethoxymethylcarbamoylation has turned out to be the most useful tool for this path. Chromatograms comparable to carboxymethylated cellulose (CMC) were obtained, which can be exploited to calculate the mole fractions of the basic building units (un-, mono-, di- and tri-substituted glucoses) of the polymer. Comparison with statistic calculations gave a first hint on the distribution of substituents along the polymer chain. For a commercial cellulose diacetate a statistic pattern of substitution was determined.  相似文献   

11.
The 13C NMR spin-lattice relaxation times (T1) of anhydroglucose units vary with the number of substituents, and the T1 values of unsubstituted anhydroglucose units of O-carboxymethylcellulose are longer than those of amylose. Those results indicate that in water, the rotational motions of anhydroglucose units of cellulose derivative are quite important local motions contributing to the 13C NMR spin-lattice relaxation, and within a cellulose chain, anhydroglucose units rotate with different degrees of freedom depending on their environment. Moreover, the 13C NMR spin-lattice relaxation data indicate that the mobilities of ionic substituents are dependent on substitution positions as well as their ionic interaction. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
Enzymatic degradation of model cellulose films prepared by a spin-coating technique was investigated by ellipsometry. The cellulose films were prior to degradation characterized by ellipsometry, contact angle measurements, ESCA (electron spectroscopy for chemical analysis) and AFM (atomic force microscopy). At enzyme addition to preformed cellulose films an initial adsorption was observed, which was followed by a total interfacial mass decrease due to enzymatic degradation of the cellulose films. The degradation rate was found to be constant during an extended time of hours, whereafter the degradation leveled off. In parallel to the decreased interfacial mass, the cellulose degradation resulted in a thinner and more dilute interfacial film. At long degradation times, however, there was an expansion of the cellulose film. The enzyme concentration affected the degradation rate significantly, with a faster degradation at a higher enzyme concentration. The effects of pH, temperature, ionic strength and stirring rate in the cuvette were also investigated.  相似文献   

13.
Seven possible regioselectively methylated cellulose acetates (RS‐MCAs)—2,3,6‐tri‐O‐methyl cellulose acetate, 3,6‐di‐O‐methyl cellulose acetate, 2,6‐di‐O‐methyl cellulose acetate, 2,3‐di‐O‐methyl cellulose acetate, 6‐O‐methyl cellulose acetate, 3‐O‐methyl cellulose acetate, and 2‐O‐methyl cellulose acetate—were prepared for the first time from chemically synthesized cellulose derivatives obtained by cationic ring‐opening polymerization and then were analyzed by 1H and 13C NMR spectroscopy. The chemical shifts of ring protons and carbons were influenced by substituent groups (methyl or acetyl) and clearly reflected the pattern of substituent distribution in anhydroglucose units. These data may conveniently be used for the determination of the substituent distribution of methyl cellulose. The synthesized RS‐MCAs also may be used for the elucidation of the structure–property relationship. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4167–4179, 2002  相似文献   

14.
Accelerated enzymic degradation of a series of six sodium carboxymethylcelluloses (CMC) varying in degree of substitution (DS) from 0.41 to 2.45 demonstrated that stability improves with increasing substitution, the DS 2.45 sample being essentially refactory to enzyme attack. The concentration of completely unsubstituted anhydroglucose (AHG) units in these samples, determined by acid hydrolysis followed by a glucose assay, is less at all substitution levels than would be expected from the relative etherification rates of the C2, C3, and C6 hydroxyls reported in the literature. Assuming random distribution of the unsubstituted AHG units, the frequency of single (IU) and multiple adjacent (xU) sequences can be predicted. Consideration of the extent of enzymic degradation, expressed in terms of the decrease in average molecular chain length deduced from [η] measurements, indicated that in CMC chain scission occurs only at xU sites. A limited comparison of the performance of methyl-, hydroxyethyl-, and hydroxypropylcelluloses under identical conditions revealed that, by contrast, in these ethers enzyme-induced chain scission is possible not only at xU but also adjacent to 1U. The hydroxyalkyl and methyl groups appear to offer approximately equivalent protection against enzyme attack.  相似文献   

15.
The interactions between polystyrene latex particles and ethyl cellulose (EC) with different functionalization pattern have been investigated. 3-Mono-O-EC and EC with statistical functionalization pattern in the anhydroglucose units were studied in aqueous solutions and dispersions. EC belongs to a group of polymers that phase separate upon heating. The two types of EC showed large differences in phase separation temperature, which was explained as an effect of different interactions with water due to different functionalization pattern. Both types of EC did adsorb on polystyrene particles, which indicated a favorable interaction between EC and polystyrene latex particles, however, in a different manner depending on the structure of EC. The conventionally synthesized ethyl cellulose with statistical functionalization pattern formed much stronger networks with polystyrene latex particles than 3-mono-O-EC did. The lower phase separation temperature and the slightly higher molecular weight of the conventional ethyl cellulose gave it higher preference for interacting with polystyrene latex particles to form network. Throughout the study, comparison is made with other cellulose derivatives like ethyl(hydroxyethyl) cellulose (EHEC) and carboxymethyl cellulose (CMC).  相似文献   

16.
Cellulose acetate (CA) was modified with caprolactone (CL) under various reaction conditions in an internal mixer. The thermal behavior and relaxation transitions of the samples were determined by dynamic mechanical analysis and differential scanning calorimetry. Various relaxation transitions were detected in externally and internally modified cellulose acetate by DMTA. These were assigned to the glass transition of the main chain, to the movement of single glucose units and to hydroxymethyl groups. The β′ transition must belong to structural units larger than a single glucose ring and their formation must depend on sample preparation conditions. No transition could be assigned to grafted polycaprolactone (PCL) chains by DMTA. Contrary to other groups, we could not detect even the transitions of modified CA by DSC. Only the crystallization of oligomeric PCL homopolymer was observed mostly when it diffused to the surface of the sample.  相似文献   

17.
A calorimetric assay procedure for the determination of cellobiose has been developed. The cellobiose is hydrolyzed by β-glucosidase and the glucose formed is measured calorimetrically by an enzyme thermistor containing co-immobilized glucose oxidase and catalase. The system was optimized with regard to the arrangement of the enzymes, the pH-dependence of the separate enzymic steps, and of the total system. By placing the β-glucosidase in a precolumn that could be switched in and out of the flow through the enzyme thermistor, both cellobiose and glucose present in the sample could be determined. The performance with standard solutions and with crude samples from cellulose degradation experiments was investigated.  相似文献   

18.
Cellulose acetate (CA) is one of the most important cellulose derivatives and its main applications are its use in membranes, films, fibers, plastics and filters. CAs are produced from cellulose sources such as: cotton, sugar cane bagasse, wood and others. One promissory source of cellulose is bacterial cellulose (BC). In this work, CA was produced from the homogeneous acetylation reaction of bacterial cellulose. Degree of substitution (DS) values can be controlled by the acetylation time. The characterization of CA samples showed the formation of a heterogeneous structure for CA samples submitted to a short acetylation time. A more homogeneous structure was produced for samples prepared with a long acetylation time. This fact changes the thermal behavior of the CA samples. Thermal characterization revealed that samples submitted to longer acetylation times display higher crystallinity and thermal stability than samples submitted to a short acetylation time. The observation of these characteristics is important for the production of cellulose acetate from this alternative source.  相似文献   

19.
Chemical degradation methods combined with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and post-source decay (PSD)-MALDI reflex TOF mass spectrometry (MS) were used to determine the sequence of a peptide branched on to a known peptide backbone. This study was applied to a branched peptide model (derivative of substance P). The branched peptide mimics a digest of a membrane receptor on to which a derivative of substance P was photochemically linked. Chemical degradation based on N-terminal ladder sequencing in combination with MALDI-TOF-MS gave only partial sequence information. Although single PSD mass spectra still remain difficult to interpret unambiguously, PSD-MALDI-TOF-MS was combined with on-target acetylation and H -- D exchange to give a better and successful approach to the unambiguous determination of the complete amino acid side-chain sequence. This study shows the capability of MALDI-TOF-MS to help in characterizing ligand-receptor interactions.  相似文献   

20.
Triethylamine-mediated carboxymethylation of ethyl cellulose using monochloroacetic acid produced a hydroxymethyl acetate derivative (I). The derivative (I) was subsequently converted to a phthalimidoethyl-ethyl cellulose ether derivative by reacting it with β-hydroxyethyl phthalimide using concentrated sulphuric acid as the catalyst. The elemental analysis agreed with the calculated values using an anhydroglucose unit formula that incorporates the degree of substitution. Mechanisms for the formation of these derivatives are proposed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号