首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of stationary and mobile phase on retention of 18 beta-adrenolytic drugs (beta-blockers) have been studied. Four 'deactivated surface' stationary phases (polar-embedded or end-capped) were examined. Special attention was drawn to the cholesterolic (SG-CHOL) and alkylamide (SG-AP) stationary phases, and their application for analysis of the compounds. The retention of analyzed substances was also examined in terms of mobile phase composition. Sixteen different configurations of mobile phases were prepared, all based on methanol and acetonitrile with ammonium acetate and ammonium formate. The difference in retention between ammonium formate and acetate water solutions, and peak shape changes related to the addition of triethylamine (TEA), were investigated. Principal component analysis was used to find the similarities between stationary phases. Polar-embedded phases synthesized on the same sorbent possess very similar properties. All phases based on silica gel compared with the monolithic column also showed similarities in retention of beta-blockers. The addition of TEA to the mobile phase did not influence strongly the retention, and analysis of asymmetry factors showed only a little peak broadening for a few compounds on the monolithic column.  相似文献   

2.
3.
The effect of varying mobile phase composition across a ternary space between two binary compositions is examined, on four different reversed-phase stationary phases. Examined stationary phases included endcapped C8 and C18, as well as a phenyl phase and a C18 phase with an embedded polar group (EPG). Mobile phases consisting of 50% water and various fractions of methanol and acetonitrile were evaluated. Retention thermodynamics are assessed via use of the van’t Hoff relationship, and retention mechanism is characterized via LSER analysis, as mobile phase composition was varied from 50/50/0 water/methanol/acetonitrile to 50/0/50 water/methanol acetonitrile. As expected, as the fraction of acetonitrile increases in the mobile phase, retention decreases. In most cases, the driving force for this decrease in retention is a reduction of the enthalpic contribution to retention. The entropic contribution to retention actually increases with acetonitrile content, but not enough to overcome the reduction in the enthalpic contribution. In a similar fashion, as methanol is replaced with acetonitrile, the v, e, and a LSER system constants change to favor elution, while the s and c constants change to favor retention. The b system constant did not show a monotonic change with mobile phase composition. Overall changes in retention across the mobile phase composition range varied, based on the identity of the stationary phase and the composition of the mobile phase.  相似文献   

4.
The system constants of the solvation parameter model are used to prepare system maps for the retention of small neutral compounds on an octylsiloxane-bonded (Kinetex C8) and diisobutyloctadecylsiloxane-bonded (Kinetex XB-C18) superficially porous silica stationary phases for aqueous mobile phases containing 10–70% (v/v) methanol or acetonitrile. Electrostatic interactions (cation-exchange) are important for the retention of weak bases with acetonitrile–water but not for methanol–water mobile phases. Compared with an octadecylsiloxane-bonded silica stationary phase (Kinetex C18) retention is reduced due to a less favorable phase ratio for both the octylsiloxane-bonded and diisobutyloctadecylsiloxane-bonded silica stationary phases while selectivity differences are small and solvent dependent. Selectivity differences for neutral compounds are larger for methanol–water but significantly suppressed for acetonitrile–water mobile phases. The selectivity differences arise from small changes in all system constants with solute size and hydrogen-bond basicity being the most important due to their dominant contribution to the retention mechanism. Exchanging the octadecylsiloxane-bonded silica column for either the octylsiloxane-bonded or diisobutyloctadecylsiloxane-bonded silica column affords little scope for extending the selectivity space and is restricted to fine tuning of separations, and in some cases, to obtain faster separations due to a more favorable phase ratio. For weak bases larger differences in relative retention are expected with acetonitrile–water mobile phases on account of the additional cation exchange interactions possible that are absent for the octadecylsiloxane-bonded silica stationary phase.  相似文献   

5.
Two capillary columns for reversed phase (RP) capillary liquid chromatography (CLC), viz. Nucleosil 100‐5 C18 and LiChrosorb RP‐select B, were characterized by the Walters test, i.e. the chromatographic test proposed for RP stationary phases. Hydrophobicity indices were determined not only in acetonitrile/water mobile phase, as proposed in the test, but they were also measured in buffered systems. This approach was used to quantify the influence of mobile phase composition on the modification of the surface of the stationary phases. In the next step, small basic compounds differing in their hydrophobicity and basicity were selected and their retention on the stationary phases in mobile phases of the same composition as used for column testing was examined. Furthermore, the retention of newly synthesized drugs, chemotherapeutics derived from thioacridine and pyridoquinoline, differing in their structures, basicity, and hydrophobicity, was also studied. The composition of the mobile phases had to be shifted to higher contents of organic modifiers – acetonitrile or methanol – in order to elute these hydrophobic compounds from the columns. The question we wanted to answer was: How is the method for testing of reversed phases related to retention, separation efficiency, and peak symmetry of various analytes?  相似文献   

6.
The system constants of the solvation parameter model are used to prepare system maps for the retention of small neutral compounds on an ethyl-bridged, ocatadecylsiloxane-bonded superficially porous silica stationary phase (Kinetex EVO C18) for aqueous mobile phases containing 10–70% (v/v) methanol or acetonitrile. Electrostatic interactions (cation-exchange) are important for the retention of weak bases with acetonitrile–water but not methanol–water mobile phase compositions. Compared with a superficially porous octadecylsiloxane-bonded silica stationary phase (Kinetex C18) with a similar morphology but different topology statistically significant differences in selectivity at the 95% confidence level are observed for neutral compounds that vary by size and hydrogen-bond basicity with other intermolecular interactions roughly similar. These selectivity differences are dampened with acetonitrile–water mobile phases, but are significant for methanol–water mobile phase compositions containing <30% (v/v) methanol. A comparison of a totally porous ethyl-bridged, octadecylsiloxane-bonded silica stationary phase (XBridge C18) with Kinetex EVO C18 indicated that they are effectively selectivity equivalent.  相似文献   

7.
The hydrophilic interaction chromatography (HILIC) like properties of an ACE cyano (CN) HPLC column was studied for the separation of some basic compounds. Good separation of a test mix of basic compounds was obtained with a mobile phase consisting of acetonitrile/water (95:5) containing 3.25 mM ammonium acetate. The retention times of the basic compounds decreased with increased ionic strength or with increased water content in the mobile phase. When Trishydroxymethyl aminomethane (Tris) (pK(a) 8.0), which is a weaker amine than ammonia (pK(a) 9.3), was used as an additive in the mobile phase retention of the basic compounds was increased. The ACE CN column gave excellent peak shapes for all the basic compounds. The utility of the column for impurity profiling of two basic drugs was tested and some impurities in oxprenolol were characterised by interfacing with Fourier transform mass spectrometry. It was also observed that ACE butyl and ACE phenyl columns retained basic compounds when the columns were eluted with a mobile phase consisting of acetonitrile/water (95:5) containing 3.25 mM ammonium acetate.  相似文献   

8.
The addition of the anionic surfactant sodium dodecyl sulphate (SDS) to hydro-organic mixtures of methanol, ethanol, propanol or acetonitrile with water yielded enhanced peak shape (i.e. increased efficiencies and symmetrical peaks) for a group of basic drugs (β-blockers) chromatographed with a Kromasil C18 column. The effect can be explained by the thin layer of surfactant associated to the hydrocarbon chain on the stationary phase in the presence of the organic solvents, which covers the free silanols on the siliceous support avoiding their interaction with the cationic basic drugs. These instead interact with the anionic head of the surfactant increasing their retention and allowing a more facile mass transfer. The peak shape behaviour with the four organic solvents (methanol, ethanol, propanol and acetonitrile) was checked in the presence and absence of SDS. The changes in peak broadening rate and symmetry inside the chromatographic column were assessed through the construction of peak half-width plots (linear relationships between the left and right half-widths at 10% peak height versus the retention time). The examination of the behaviour for a wide range of compositions indicated that the effect of acetonitrile in the presence of SDS is different from ethanol and propanol, which behave similarly. Acetonitrile seems to be superior to the alcohols in terms of peak shape, which can be interpreted by the larger reduction in the adsorbed surfactant layer on the C18 column. However, the decreased efficiencies observed at increasing surfactant concentration in the mobile phase should be explained by the reduction in retention times, more than by a change in the stationary phase nature.  相似文献   

9.
The 6 antihyperlipidemic agents-bezafibrate, ciprofibrate, clofibrate, clofibric acid, fenofibrate, and gemfibrozil-were separated on octadecyl (C18) and cyano (CN) chemically bonded columns using mobile phases containing phosphate buffer and different amounts of acetonitrile, dioxane, propan-2-ol, methanol, and tetrahydrofuran. Relationships between log k values and mobile phase composition have been examined for these systems. Analysis was performed on a Waters LC system with Merck LichroCART C18 and CN 125 mm columns using a flow rate of 1 mL/min and 227 nm detection. More than one-half of the results fitted Snyder-Soczewinski equations with r >0.995. Separation of all drugs was achieved on the C18 column with a mobile phase containing 45% propan-2-ol in phosphate buffer (pH = 2.145) and on a CN column with 20% acetonitrile in the same buffer. The best mobile phase, containing 45% propan-2-ol, was used to quantitate bezafibrate, ciprofibrate, fenofibrate, and gemfibrozil in pharmaceutical formulations. The active substances were extracted with methanol. The calibration curve was constructed in the 0.1-0.8 mg/mL range for all drugs and provided satisfactory linearity (Lack-of-Fit test and Mandel's test). The recovery function was sufficiently linear in all cases, with an insignificant intercept and slope very close to 1. Accuracy was tested by quantitating 3 fortified samples (50, 100, and 150%), which gave results without significant differences. None of the excipients interfered in the analysis. The recovery was 99.85% for bezafibrate, 99.02% for ciprofibrate, 99.53% for fenofibrate, and 99.92% for gemfibrozil, with relative standard deviation values of 0.63, 1.61, 1.84, and 0.88%, respectively.  相似文献   

10.
The thermodynamic retention behaviour of a linear series of polycyclic aromatic hydrocarbons (PAHs) was investigated on C18 and selected phenyl-type reversed-phase stationary phases, namely C18, C18 Aqua, Propyl-phenyl and Synergi polar-RP stationary phases, using methanol mobile phases. The Propyl-phenyl stationary phase, despite having the lowest surface coverage, was found to exhibit significantly larger enthalpic interactions to the other Phenyl-type phase (Synergi polar-RP) even though this had a much higher surface coverage. This indicated that stronger interactions between the PAHs and the stationary phase ligands were occurring on the Propyl-phenyl phase. Evaluation of the elution band profile of the PAHs in the aqueous methanol mobile phase revealed fairly symmetrical bands for the C18, C18 Aqua and Synergi polar-RP, but severe peak tailing on the Propyl-phenyl phase. A change in mobile phase from methanol to acetonitrile improved the peak shape of the PAHs on the Propyl-phenyl phase, leading to the assumption that unfavourable pi-pi interactions were occurring between the electron-rich PAHs and the electron-rich phenyl rings of the Propyl-phenyl phase.  相似文献   

11.
Chromatographic properties of five steroid drugs: cortisone, hydrocortisone, methylprednisolone, prednisolone and norgestrel have been studied by normal-, reversed-phase and hydrophilic neutral cyano-bonded silica stationary phase with five binary mobile phases (acetonitrile-water, acetonitrile-DMSO, acetonitrile-methanol, acetone-petroleum ether, acetone-water) in which the concentration of organic modifier was varied from 0 to 100% (v/v). This study reports the optimization of steroid hormones separation. Chromatographic retention data and possible retention mechanisms are discussed. Separation abilities of mobile and stationary phases were studied using the principal component analysis method. The best separation of methylprednisolone and prednisolone is with a chromatographic system included silica gel as stationary phase and mixture of acetonitrile and DMSO (10:90 v/v). These two anti-inflammatory drugs can be fast separated from norgestrel when CN is used as stationary phase and acetone and water (40:60 v/v) as mobile phase. The highest values of the parameter Δ(ΔG°) and alfa for cortisone and hydrocortisone was observed in case of using CN as stationary phase and water-acetonitryle (40:60 v/v) as mobile phase.   相似文献   

12.

The selectivity of TLC separation of non-selective calcium-channel blockers prenylamine, lidoflazine, bepridil, and fendiline has been investigated silanized silica gel RP8 and RP18 plates. Optimization of retention and selectivity for these compounds was achieved by altering the pH and the concentration of organic modifier (methanol, ethanol, tetrahydrofuran, acetonitrile) in the aqueous mobile phases. The substances were separated in horizontal chambers and the drugs were detected by videoscanning and illumination of the plates at λ = 254 nm. On RP8 plates the best separation was achieved with 50% acetonitrile in pH 2.06 phosphate buffer as mobile phase. On RP18 the best separation was achieved with 50% ethanol in pH 2.06 phosphate buffer.

  相似文献   

13.
The silica-based stationary phases with favorable physical characteristics are the most popular in liquid chromatography. However, there are several problems with silica-based materials: severe peak tailing in the chromatography of basic compounds, non-reproducibility for the same chemistry columns, and limited pH stability. Ionic liquids (ILs) as mobile phase components can reduce peak tailing by masking residual free silanol groups. The chromatographic behavior of some alkaloids from different classes was studied on C18, phenyl, and pentafluorophenyl columns with different kinds and concentrations of ionic liquids as additives to aqueous mobile phases. Ionic liquids with different alkyl substituents on different cations or with different counterions as eluent additives were investigated. The addition of ionic liquids has great effects on the separation of alkaloids: decrease in band tailing, increase in system efficiency, and improved resolution. The retention, separation selectivity, and sequence of alkaloid elution were different when using eluents containing various ILs. The increase of IL concentration caused an increase in silanol blocking, thus conducted to decrease the interaction between alkaloid cations and free silanol groups, and caused a decrease of alkaloids retention, improvement of peak symmetry, and increase of theoretical plate number in most cases. The effect of ILs on stationary phases with different properties was also examined. The different properties of stationary phases resulted in differences in analyte retention, separation selectivity, peak shape, and system efficiency. The best shape of peaks and the highest theoretical plate number for most investigated alkaloids in mobile phases containing IL was obtained on pentafluorophenyl (PFP) phase.  相似文献   

14.
Plots of the retention factor against mobile phase composition were used to organize a varied group of solutes into three categories according to their retention mechanism on an octadecylsiloxane-bonded silica stationary phase HyPURITY C18 with methanol-water and acetonitrile-water mobile phase compositions containing 10-70% (v/v) organic solvent. The solutes in category 1 could be fit to a general retention model, Eq. (2), and exhibited normal retention behavior for the full composition range. The solutes in category 2 exhibited normal retention behavior at high organic solvent composition with a discontinuity at low organic solvent compositions. The solutes in category 3 exhibited a pronounced step or plateau in the middle region of the retention plots with a retention mechanism similar to category 1 solutes at mobile phase compositions after the discontinuity and a different retention mechanism before the discontinuity. Selecting solutes and appropriate composition ranges from the three categories where a single retention mechanism was operative allowed modeling of the experimental retention factors using the solvation parameter model. These models were then used to predict retention factors for solutes not included in the models. The overwhelming number of residual values [log k (experimental) - log k (model predicted)] were negative and could be explained by contributions from steric repulsion, defined as the inability of the solute to insert itself fully into the stationary phase because of its bulkiness (i.e., volume and/or shape). Steric repulsion is shown to strongly depend on the mobile phase composition and was more significant for mobile phases with a low volume fraction of organic solvent in general and for mobile phases containing methanol rather than acetonitrile. For mobile phases containing less than about 20 % (v/v) organic solvent the mobile phase was unable to completely wet the stationary phase resulting in a significant change in the phase ratio and for acetonitrile (but less so methanol) changes in the solvation environment indicated by a discontinuity in the system maps.  相似文献   

15.
Hexabromocyclododecane (HBCD) is a flame retardant that is undergoing environmental risk assessment. The liquid chromatographic retention and electrospray ionization matrix effects were investigated for HBCD methods of analysis for environmental matrices. Column selectivity towards HBCD diastereomers was evaluated for C30 and C18 stationary phases under different mobile phase conditions and column temperatures. The HBCD elution order was dependent on the shape selectivity of the stationary phase and the mobile phase composition. Greater resolution, on columns with reduced shape selectivity, of beta-HBCD and gamma-HBCD was achieved with the use of an acetonitrile/water (compared with a methanol/water) mobile phase composition. A liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method for the analysis of HBCD in biological tissues was evaluated for potential matrix effects. The influence of extracted matrix components on HBCD diastereomer and enantiomer analysis was investigated using a postextraction addition approach. Although the analysis of HBCD diastereomers was relatively unaffected by the sample matrix, the responses of the HBCD enantiomers in tissue samples were significantly influenced by matrix effects and other changes to the ionization conditions. The use of racemic 13C-labeled HBCD diastereomers as internal standards for enantiomer fraction measurements corrected for the changes in the mass spectrometer response.  相似文献   

16.
Abstract

A comparison of the use of various commercially available columns for the high-speed reverse-phase ion-pair high performance liquid chromatographic separation of drugs of forensic interest is discussed. The columns include a Partisil 5 ODS-3 RAC, a Partisil 5 C8 RAC, a Radial Pak microBondapak C18 cartridge, a Perkin-Elmer HS/5 C18 and a Perkin-Elmer HS/3 C18. The mobile phases employed contain water, acetonitrile, phosphoric acid, and sodium hydroxide, with or without hexylamine. When a mobile phase without an amine modifier is employed, retention times were at least halved, except with a HS/3 C18 column, over those obtained with conventional columns. Basic drugs did not elute when the above mobile phase is used with a HS/3 C18 column. In addition, the selectivities of the other high speed columns were similar. Further reductions in retention times and different selectivities were obtained when an amine modifier is utilized. Column performance parameters such as n, V and v are presented for the colupns examined. A new column performance parameter S which is (n/V)1/2 is introduced and discussed.  相似文献   

17.
Evaluation of lipophilicity parameters for basic compounds using different chromatographic stationary phases is presented. An HPLC method for determination of lipophilic molecule-stationary phase interactions was based on gradient analysis. Differences in correlation between the lipophilicity of compounds and experimental chromatographic results obtained in pseudo-membrane systems showed a strong influence of stationary phase structure and physico-chemical properties. beta-Blocker drugs with varying lipophilicity and bio-activity were chosen as test compounds. The stationary phases used for the study were monolithic rod-structure C18 and silica gel octadecyl phase SG-C18 as reference material. The second group was silica gel-based polar-embedded alkylamide and cholesterolic phases. The mobile phase was composed of acetonitrile or methanol with ammonium acetate, and a linear gradient of methanol and acetonitrile in mobile phase was performed. A linear correlation of plots of log k(g) = f(log P) was observed, especially for polar-embedded phases, and this allowed log P(HPLC) to be calculated. The behavior of stationary phases in methanol and acetonitrile buffer showed differences between obtained log P(HPLC) values.  相似文献   

18.
The effects of acetonitrile and potassium dihydrogen phosphate concentrations in a mobile phase and the pH of the mobile phase on the retention of analgin (dipyrone) and anesthesin (benzocaine) on Symmetry C18 and Nova-Pak CN HP sorbents with grafted octadecylsilanol and nitrile groups, respectively, were studied. It was found that, under identical conditions, retention on the sorbent with grafted nitrile groups was weaker. A rapid and cost-effective procedure was developed for the determination of analgin and anesthesin in the analysis of Bellalgin tablets.  相似文献   

19.
This study explored feasibility of utilizing sodium phosphate and mixtures of sodium phosphate and sodium perchlorate salts in mobile phases as UV transparent alternatives to the ammonium formate salts commonly used in LC–MS mobile phases. Chromatography experiments were run at pH 3.5 in 25% acetonitrile mobile phase, using several model cationic analytes to evaluate cation retention on two different C18 columns as the type or amount of salt was varied. For both columns, phosphate consistently showed less cation retention than formate. In other respects, the two columns showed very different behavior. The study suggests that it is feasible to use UV transparent mobile phase additives to provide comparable cation retention of formate mobile phases, but that the exact composition needed for optimal retention agreement is column dependent.  相似文献   

20.
Nano-liquid chromatography-mass spectrometry (nano-LC-MS) was evaluated for the separation of basic compounds of pharmaceutical interest. The separation of selected beta-blockers, namely nadolol, oxprenolol, alprenolol and propranolol in the presence of terbutaline was performed using two 75 microm I.D. capillaries packed with two different RP18 stationary phases (SP). The best results concerning resolution and efficiency were achieved using the SP where free silanol groups were not present. As expected, this latter SP proved to be very efficient and symmetry factors were observed mainly in the case of the more retained analytes. Baseline resolution of all studied basic compounds was achieved with the Cogent bidentate C18 silica phase (CBC18) eluting analytes at 800 nL/min with a mobile phase containing 500 mM ammonium acetate pH 4.5-water-methanol (1:8:91, v/v/v). The separated basic compounds were revealed using on-column UV detector at 205 nm and electrospray-ion-trap mass spectrometer (ESI-MS). The packed capillary was connected to the MS through a commercial sheath liquid interface or a sheathless nano-spray interface and in both cases the sensitivity was studied and the results compared. Limit of detection (LOD) as low as 0.1 ng/mL was measured for nadolol using the sheathless nano-spray interface and the capillary column packed with the CBC18 stationary phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号