首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the synchronization of chaos and hyperchaos in first-order time-delayed systems that are coupled using the nonlinear time-delay excitatory coupling. We assign two characteristic time delays: the system delay that is same for both the systems, and the coupling delay associated with the coupling path. We show that depending upon the relative values of the system delay and the coupling delay the coupled systems show anticipatory, complete, and lag synchronization. We derive a general stability condition for all the synchronization processes using the Krasovskii–Lyapunov theory. Numerical simulations are carried out to corroborate the analytical results. We compute a quantitative measure to ensure the occurrence of different synchronization phenomena. Finally, we set up an experiment in electronic circuit to verify all the synchronization scenario. It is observed that the experimental results are in good agreement with our analytical results and numerical observations.  相似文献   

2.
The phenomenon of stochastic synchronization in globally coupled FitzHugh-Nagumo (FHN) neuron system subjected to spatially correlated Gaussian noise is investigated based on dynamical mean-field approximation (DMA) and direct simulation (DS). Results from DMA are in good quantitative or qualitative agreement with those from DS for weak noise intensity and larger system size. Whether the consisting single FHN neuron is staying at the resting state, subthreshold oscillatory regime, or the spiking state, our investigation shows that the synchronization ratio of the globally coupled system becomes higher as the noise correlation coefficient increases, and thus we conclude that spatial correlation has an active effect on stochastic synchronization, and the neurons can achieve complete synchronization in the sense of statistics when the noise correlation coefficient tends to one. Our investigation also discloses that the noise spatial correlation plays the same beneficial role as the global coupling strength in enhancing stochastic synchronization in the ensemble. The result might be useful in understanding the information coding mechanism in neural systems.  相似文献   

3.

This work deals with the dynamics of a network of piezoelectric micro-beams (a stack of disks). The complete synchronization condition for this class of chaotic nonlinear electromechanical system with nearest-neighbor diffusive coupling is studied. The nonlinearities within the devices studied here are in both the electrical and mechanical components. The investigation is made for the case of a large number of coupled discrete piezoelectric disks. The problem of chaos synchronization is described and converted into the analysis of the stability of the system via its differential equations. We show that the complete synchronization of N identical coupled nonlinear chaotic systems having shift invariant coupling schemes can be calculated from the synchronization of two of them. According to analytical, semi-analytical predictions and numerical calculations, the transition boundaries for chaos synchronization state in the coupled system are determined as a function of the increasing number of oscillators.

  相似文献   

4.
We consider the synchronization of diffusive coupled systems in situations where the synchronization is a consequence of the dissipation in the coupling as well as ones where there is an interaction between the inherent damping in the subsystems and the coupling. It is not required that the subsystems be identical, and they are allowed to have chaotic dynamics. Both discrete and continuous versions are discussed. We also consider coupled oscillators where the dynamics of each oscillator is determined by circuitry across a lossless transmission line.  相似文献   

5.
We explore the behaviour of an ensemble of chaotic oscillators diffusively coupled only to an external chaotic system, whose intrinsic dynamics may be similar or dissimilar to the group. Counter-intuitively, we find that a dissimilar external system manages to suppress the intrinsic chaos of the oscillators to fixed point dynamics, at sufficiently high coupling strengths. So, while synchronization is induced readily by coupling to an identical external system, control to fixed states is achieved only if the external system is dissimilar. We quantify the efficacy of control by estimating the fraction of random initial states that go to fixed points, a measure analogous to basin stability. Lastly, we indicate the generality of this phenomenon by demonstrating suppression of chaotic oscillations by coupling to a common hyper-chaotic system. These results then indicate the easy controllability of chaotic oscillators by an external chaotic system, thereby suggesting a potent method that may help design control strategies.  相似文献   

6.
Cluster synchronization and rhythm dynamics are studied for a complex neuronal network with the small world structure connected by chemical synapses. Cluster synchronization is considered as that in-phase burst synchronization occurs inside each group of the network but diversity may take place among different groups. It is found that both one-cluster and multi-cluster synchronization may exist for chemically excitatory coupled neuronal networks, however, only multi-cluster synchronization can be achieved for chemically inhibitory coupled neuronal networks. The rhythm dynamics of bursting neurons can be described by a quantitative characteristic, the width factor. We also study the effects of coupling schemes, the intrinsic property of neurons and the network topology on the rhythm dynamics of the small world neuronal network. It is shown that the short bursting type is robust with respect to the coupling strength and the coupling scheme. As for the network topology, more links can only change the type of long bursting neurons, and short bursting neurons are also robust to the link numbers.  相似文献   

7.
In this paper, we investigate the cluster synchronization problem for networks with nonlinearly coupled nonidentical dynamical systems and asymmetrical coupling matrix by using pinning control. We derive sufficient conditions for cluster synchronization for any initial values through a feedback scheme and propose an adaptive feedback algorithm that adjusts the coupling strength. Some numerical examples are then given to illustrate the theoretical results.  相似文献   

8.
In this work, we study the synchronization of two coupled chaotic oscillators. The uncoupled system corresponds to a mass attached to a nonlinear spring and driven by a rolling carpet. For identical oscillators, complete synchronization is analyzed using Lyapunov stability theory. This first analysis reveals that stability area of synchronization increases with the values of the coupling coefficient. Numerical simulations are shown to illustrate and validate stick-slip and chaos synchronization. Some cases of anti-synchronization are detected. Curiously, amplification of fixed point either regular or chaotic is observed in the area of anti-synchronization. Furthermore, phase synchronization is studied for nonidentical oscillators. It appears that for certain values of the coupling coefficient, coincidence of the phases is obtained, while the amplitudes remain uncorrelated. Contrarily to the case of complete synchronization, it does not exist a threshold of the coupling from which phase synchronization could appear. Besides, when we add the modified tuned mass damper on the structure, the behavior of the system can change including the appearance of synchronization, particularly in the region of fixed point. More precisely, complete synchronization is improved in the region of fixed point, while the damage of synchronization is observed when the velocity of the carpets is less than \(0.30\) .  相似文献   

9.
In this paper, effect of the coupling matrix with a weight parameter on synchronization pattern in a globally coupled network is investigated. On the basis of matrix theory, the threshold values of the coupling strength and the weight parameter for cluster synchronization have been obtained by utilizing the attractiveness criteria of the invariant synchronization manifold. It shows that cluster synchronization bifurcation comes forth, which concept is first put forward. That is to say, via changing the weight parameter and the coupling strength, the purpose of controlling the number of clusters is achieved, which provides a new idea for control the number of clusters in a network. Numerical simulations are given to demonstrate the theoretical results. In addition, the theoretical results and the numerical simulations also show that full synchronization may not be realized even if the network is globally coupled when there are some negative couplings.  相似文献   

10.
A system consisting of two linearly coupled chaotic Colpitts oscillators is considered. Two different coupling configurations, namely coupled collector nodes (C–C) and coupled emitter nodes (E–E) have been investigated. In addition to identical oscillators the case of mismatched circuits has been studied. Specifically the influence of the transistor parameter mismatch has been analyzed. The relative synchronization error has been estimated for different mismatch levels provided the coupling coefficient is twice larger than the synchronization threshold. Illustrative experimental results, including phase portraits and synchronization error are presented.  相似文献   

11.
The projective synchronization of one-dimensional discrete spatiotemporal chaotic systems is discussed in this paper. The coupling equation is determined by suitably separating the linear term and the nonlinear term of the dynamic function, and two coupled map lattices reach projective synchronization by the nonlinear-coupling method. Besides, this method is expanded to the projective synchronization of the complex network composed by coupled map lattices. Numerical simulations show the effectiveness of the scheme.  相似文献   

12.
A new kind of generalized heterochronous synchronization phenomenon is reported. Different kinds of generalized synchronous states (including generalized anticipated, isochronous and lag projective synchronization) coexist among different state variables between two unidirectionally coupled time-delayed chaotic systems. The analytical conditions for generalized heterochronous synchronization are obtained. We also find that the synchronization conditions are independent of the delay times in the original time-delayed system. The theoretical results are well confirmed by the numerical simulations and electronic circuit experiments.  相似文献   

13.
Premraj  D.  Manoj  Krishna  Pawar  Samadhan A.  Sujith  R. I. 《Nonlinear dynamics》2021,103(2):1439-1452

The occurrence of synchronization and amplitude death phenomena due to the coupled interaction of limit cycle oscillators (LCO) has received increased attention over the last few decades in various fields of science and engineering. Studies pertaining to these coupled oscillators are often performed by studying the effect of various coupling parameters on their mutual interaction. However, the effect of system parameters (i.e., the amplitude and frequency) on the coupled interaction of such LCO has not yet received much attention, despite their practical importance. In this paper, we investigate the dynamical behavior of time-delay coupled Stuart–Landau (SL) oscillators exhibiting subcritical Hopf bifurcation for the variation of amplitude and frequency of these oscillators in their uncoupled state. For identical SL oscillators, a gradual increase in the amplitude of LCO shrinks the amplitude death regions observed between the regions of in-phase and anti-phase synchronization leading to its eventual disappearance, resulting in the occurrence of phase-flip bifurcations at higher amplitudes of LCO. We also observe an alternate existence of in-phase and anti-phase synchronization regions for higher values of time delay, whose prevalence of occurrence increases with an increase in the frequency of the oscillator. With the introduction of frequency mismatch, the region of amplitude death. The forced response of SL oscillator shows an asymmetry in the Arnold tongue and the manifestation of asynchronous quenching of LCO. An increase in the amplitude of LCO narrows the Arnold tongue and reduces the region of asynchronous quenching observed in the system. Finally, we compare the coupled and forced response of SL oscillators with the corresponding experimental results obtained from laminar thermoacoustic oscillators and the numerical results from van der Pol (VDP) oscillators. We show that the SL model qualitatively displays many features observed experimentally in coupled and forced thermoacoustic oscillators. In contrast, the VDP model does not capture most of the experimental results due to the limitation in the independent variation of system parameters.

  相似文献   

14.
The properties of firing synchronization of learning neuronal networks, electrically and chemically coupled ones, with small-world connectivity are studied. First, the variation properties of synaptic weights are examined. Next the effects of the synaptic learning rate on the properties of firing rate and synchronization are investigated. The influences of the coupling strength and the shortcut probability on synchronization are also explored. It is shown that synaptic learning suppresses over-excitement for the networks, helps synchronization for the electrically coupled neuronal network but destroys synchronization for the chemically coupled one. Both introducing shortcuts and increasing the coupling strength are helpful in improving synchronization of the neuronal networks. The spatio-temporal patterns illustrate and confirm the above results.  相似文献   

15.
Recently, a novel mixed synchronization phenomenon is observed in counter-rotating nonlinear coupled oscillators (Prasad in Chaos Solitons Fractals 43:42?C46, 2010). In mixed synchronization state: some variables are synchronized in-phase, while others are out-of-phase. We have experimentally verified the occurrence of mixed synchronization states in coupled counter-rotating chaotic piecewise R?ssler oscillator. Analytical discussion on approximate stability analysis and numerical confirmation on the experimentally observed behavior is also given.  相似文献   

16.
It is possible that self-excited vibrations in turbomachine blades synchronize due to elastic coupling through the shaft. The synchronization of four coupled van der Pol oscillators is presented here as a simplified model. For quasilinear oscillations, a stability condition is derived from an analysis based on linearizing the original equation around an unperturbed limit cycle and transforming it into Hill’s equation. For the nonlinear case, numerical simulations show the existence of two well-defined regions of phase relationships in parameter space in which a multiplicity of periodic attractors is embedded. The size of these regions strongly depends on the values of the oscillator and coupling constants. For the coupling constant below a critical value, there exists a region in which a diversity of phase-shift attractors is present, whereas for values above the critical value an in-phase attractor is predominant. It is observed that the presence of an anti-phase attractor in the subcritical region is associated with sudden changes in the period of the coupled oscillators. The convergence of the coupled system to a particular periodic attractor is explored using several initial conditions. The study is extended to non-identical oscillators, and it is found that there is synchronization even over a wide range of difference among the oscillator constants.  相似文献   

17.
On the basis of numerical computation, the conditions of the modes coupling are proposed, and the high-frequency modes are coupled, but the low frequency modes are uncoupled. It is proved that there exist an absorbing set and a global finite dimensional attractor which is compact and connected in the function space for the high-frequency modes coupled two Ginzburg-Landau equations(MGLE). The trajectory of driver equation may be spatio-temporal chaotic. One associates with MGLE, a truncated form of the equations. The prepared equations persist in long time dynamical behavior of MGLE. MGLE possess the squeezing properties under some conditions. It is proved that the complete spatio-temporal chaotic synchronization for MGLE can occur. Synchronization phenomenon of infinite dimensional dynamical system (IFDDS) is illustrated on the mathematical theory qualitatively. The method is different from Liapunov function methods and approximate linear methods.  相似文献   

18.

In this work, an indirect coupling used in a pair of simple autonomous discrete systems in order to enhance the emergence of hyperchaos is presented. The peculiarity that the used systems will never generate chaotic or hyperchaotic dynamics by itself makes this case an interesting problem to address. Moreover, it is possible to achieve in-phase or anti-phase synchronization by varying some parameters of the indirect coupling. Additionally, different methods to analyze the emerging dynamics of the coupled systems using an indirect coupling compared to a conventional coupling are presented. Finally, an electronic digital implementation is conducted by using the SPI protocol of two coupled PIC-24FJ64GA006 16-bit microcontrollers.

  相似文献   

19.
In this paper, we numerically study the effect of time-periodic coupling strength on the synchronization of firing activity in delayed Newman–Watts networks of chaotic bursting neurons. We first examine how the firing synchronization transitions induced by time delay under fixed coupling strength changes in the presence of time-periodic coupling strength, and then focus on how time-periodic coupling strength induces synchronization transitions in the networks. It is found that time delay can induce more synchronization transitions in the presence of time-periodic coupling strength compared to fixed coupling strength. As the frequency of time-periodic coupling strength is varied, the firing exhibits multiple synchronization transitions between spiking antiphase synchronization and in-phase synchronization of various firing behaviors including bursting, spiking, and both bursting and spiking, depending on the values of time delay. These results show that time-periodic coupling strength can increase the synchronization transitions by time delay and can induce multiple synchronization transitions of various firing behaviors in the neuronal networks. This means that time-periodic coupling strength plays an important role in the information processing and transmission in neural systems.  相似文献   

20.
We study the appearance of a chaotic partial synchronization in a system of globally coupled maps. We analyze the structure of cluster zones for small values of the coupling parameter and conditions for the formation of chaotic attractors on cluster manifolds. We find a formula that describes the relationship between the transversal and longitudinal Lyapunov numbers for trajectories on the manifold and necessary conditions for the transversal stability of these trajectories.Translated from Neliniini Kolyvannya, Vol. 7, No. 2, pp. 229–240, April–June, 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号