首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We consider an autoparametric system which consists of an oscillator coupled with a parametrically excited subsystem. The oscillator and the subsystem are in one-to-one internal resonance. The excited subsystem is in principal parametric resonance. The system contains the most general type of quadratic and cubic non-linearities. The method of second-order averaging is used to yield a set of autonomous equations of the second-order approximations to the parametric excited system with autoparametric resonance. The Shilnikov-type multi-pulse orbits and chaotic dynamics of the averaged equations are studied in detail. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Shilnikov-type multi-pulse homoclinic orbits in the averaged equations. The results obtained above mean the existence of amplitude-modulated chaos in the Smale horseshoe sense in the parametric excited system with autoparametric resonance. The Shilnikov-type multi-pulse chaotic motions of the parametric excited system with autoparametric resonance are also found by using numerical simulation.  相似文献   

2.
The bifurcations and chaotic dynamics of parametrically and externally excited suspended cables are investigated in this paper. The equations of motion governing such systems contain quadratic and cubic nonlinearities, which may result in two-to-one and one-to-one internal resonances. The Galerkin procedure is introduced to simplify the governing equations of motion to ordinary differential equations with two-degree-of-freedom. The case of one-to-one internal resonance between the modes of suspended cables, primary resonant excitation, and principal parametric excitation of suspended cables is considered. Using the method of multiple scales, a parametrically and externally excited system is transformed to the averaged equations. A pseudo arclength scheme is used to trace the branches of the equilibrium solutions and an investigation of the eigenvalues of the Jacobian matrix is used to assess their stability. The equilibrium solutions experience pitchfork, saddle-node, and Hopf bifurcations. A detailed bifurcation analysis of the dynamic (periodic and chaotic) solutions of the averaged equations is presented. Five branches of dynamic solutions are found. Three of these branches that emerge from two Hopf bifurcations and the other two are isolated. The two Hopf bifurcation points, one is supercritical Hopf bifurcation point and another is primary Hopf bifurcation point. The limit cycles undergo symmetry-breaking, cyclic-fold, and period-doubling bifurcations, whereas the chaotic attractors undergo attractor-merging, boundary crises. Simultaneous occurrence of the limit cycle and chaotic attractors, homoclinic orbits, homoclinic explosions and hyperchaos are also observed.  相似文献   

3.
The global bifurcations and multi-pulse orbits of an aero-thermo-elastic functionally graded material (FGM) truncated conical shell under complex loads are investigated with the case of 1:2 internal resonance and primary parametric resonance. The method of multiple scales is utilized to obtain the averaged equations. Based on the averaged equations obtained, the normal form theory is employed to find the explicit expressions of normal form associated with a double zero and a pair of pure imaginary eigenvalues. The energy-phase method developed by Haller and Wiggins is used to analyze the multi-pulse homoclinic bifurcations and chaotic dynamics of the FGM truncated conical shell. The analytical results obtained here indicate that there exist the multi-pulse Shilnikov-type homoclinic orbits for the resonant case which may result in chaos in the system. Homoclinic trees which describe the repeated bifurcations of multi-pulse solutions are found. The diagrams show a gradual breakup of the homoclinic tree in the system as the dissipation factor is increased. Numerical simulations are presented to illustrate that for the FGM truncated conical shell, the multi-pulse Shilnikov-type chaotic motions can occur. The influence of the structural-damping, the aerodynamic-damping, and the in-plane and transverse excitations on the system dynamic behaviors is also discussed by numerical simulations. The results obtained here mean the existence of chaos in the sense of the Smale horseshoes for the FGM truncated conical shell.  相似文献   

4.
Forced, weakly nonlinear oscillations of a two degree-of-freedom autoparametric vibration absorber system are studied for resonant excitations. The method of averaging is used to obtain first-order approximations to the response of the system. A complete bifurcation analysis of the averaged equations is undertaken in the subharmonic case of internal and external resonance. The locked pendulum mode of response is found to bifurcate to coupled-mode motion for some excitation frequencies and forcing amplitudes. The coupled-mode response can undergo Hopf bifurcation to limit cycle motions, when the two linear modes are mistuned away from the exact internal resonance condition. The software packages AUTO and KAOS are used and a numerically assisted study of the Hopf bifurcation sets, and dynamic steady solutions of the amplitude or averaged equations is presented. It is shown that both super-and sub-critical Hopf bifurcations arise and the limit cycles quickly undergo period-doubling bifurcations to chaos. These imply chaotic amplitude modulated motions for the system.  相似文献   

5.
Nonlinear Nonplanar Dynamics of Parametrically Excited Cantilever Beams   总被引:2,自引:0,他引:2  
The nonlinear nonplanar response of cantilever inextensional metallic beams to a principal parametric excitation of two of its flexural modes, one in each plane, is investigated. The lowest torsional frequencies of the beams considered are much larger than the frequencies of the excited modes so that the torsional inertia can be neglected. Using this condition as well as the inextensionality condition, we develop a Lagrangian whose variation leads to two integro-partial-differential equations governing the motions of the beams. The method of time-averaged Lagrangian is used to derive four first-order nonlinear ordinary-differential equations governing the modulation of the amplitudes and phases of the two interacting modes. These modulation equations exhibit symmetry properties. A pseudo arclength scheme is used to trace the branches of the equilibrium solutions and an investigation of the eigenvalues of the Jacobian matrix is used to assess their stability. The equilibrium solutions experience pitchfork, saddle-node, Hopf, and codimension-2 bifurcations. A detailed bifurcation analysis of the dynamic solutions of the modulation equations is presented. Five branches of dynamic (periodic and chaotic) solutions were found. Two of these branches emerge from two Hopf bifurcations and the other three are isolated. The limit cycles undergo symmetry-breaking, cyclic-fold, and period-doubling bifurcations, whereas the chaotic attractors undergo attractor-merging and boundary crises.  相似文献   

6.
We consider a pendulum subjected to linear feedback control with periodic desired motions. The pendulum is assumed to be driven by a servo-motor with small time constant, so that the feedback control system can be approximated by a periodically forced oscillator. It was previously shown by Melnikov's method that transverse homoclinic and heteroclinic orbits exist and chaos may occur in certain parameter regions. Here we study local bifurcations of harmonics and subharmonics using the second-order averaging method and Melnikov's method. The Melnikov analysis was performed by numerically computing the Melnikov functions. Numerical simulations and experimental measurements are also given and are compared with the previous and present theoretical predictions. Sustained chaotic motions which result from homoclinic and heteroclinic tangles for not only single but also multiple hyperbolic periodic orbits are observed. Fairly good agreement is found between numerical simulation and experimental results.  相似文献   

7.
This paper presents the analysis of the global bifurcations and chaotic dynamics for the nonlinear nonplanar oscillations of a cantilever beam subjected to a harmonic axial excitation and transverse excitations at the free end. The governing nonlinear equations of nonplanar motion with parametric and external excitations are obtained. The Galerkin procedure is applied to the partial differential governing equation to obtain a two-degree-of-freedom nonlinear system with parametric and forcing excitations. The resonant case considered here is 2:1 internal resonance, principal parametric resonance-1/2 subharmonic resonance for the in-plane mode and fundamental parametric resonance–primary resonance for the out-of-plane mode. The parametrically and externally excited system is transformed to the averaged equations by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is applied to find the explicit formulas of normal forms associated with a double zero and a pair of pure imaginary eigenvalues. Based on the normal form obtained above, a global perturbation method is utilized to analyze the global bifurcations and chaotic dynamics in the nonlinear nonplanar oscillations of the cantilever beam. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Silnikov type single-pulse homoclinic orbit in the averaged equation for the nonlinear nonplanar oscillations of the cantilever beam. These results show that the chaotic motions can occur in the nonlinear nonplanar oscillations of the cantilever beam. Numerical simulations verify the analytical predictions.  相似文献   

8.
Global bifurcations and multi-pulse chaotic motions of flexible multi-beam structures derived from an L-shaped beam resting on a vibrating base are investigated considering one to two internal resonance and principal resonance. Base on the exact modal functions and the orthogonality conditions of global modes, the PDEs of the structure including both nonlinear coupling and nonlinear inertia are discretized into a set of coupled autoparametric ODEs by using Galerkin’s technique. The method of multiple scales is applied to yield a set of autonomous equations of the first order approximations to the response of the dynamical system. A generalized Melnikov method is used to study global dynamics for the “resonance case”. The present analysis indicates multi-pulse chaotic motions result from the existence of Šilnikov’s type of homoclinic orbits and the critical parameter surface under which the system may exhibit chaos in the sense of Smale horseshoes are obtained. The global results are finally interpreted in terms of the physical motion of such flexible multi-beam structure and the dynamical mechanism on chaotic pattern conversion between the localized mode and the coupled mode are revealed.  相似文献   

9.
Semi-analytical and semi-numerical method is used to investigate the global bifurcations and chaos in the nonlinear system of a Van der Pol-Duffing-Mathieu oscillator. Semi-analytical and semi-numerical method means that the autonomous system, called Van der Pol-Duffing system, is analytically studied to draw all global bifurcations diagrams in parameter space. These diagrams are called basic bifurcation diagrams. Then fixing parameter in every space and taking parametrically excited amplitude as a bifurcation parameter, we can observe the evolution from a basic bifurcation diagram to chaotic pattern by numerical methods. The project supported by the National Natural Science Foundation of China  相似文献   

10.
讨论非惯性参考系中弹性薄板动力系统1∶1内共振时的全局分岔及其混沌性质.首先对系统的奇点进行了分析,进而得到了奇点附近同宿轨的参数方程,再用Melnikov方法研究了系统的同宿轨分岔及其混沌运动.研究表明,对各种不同共振情形,系统将由同宿轨分岔过渡到混沌运动.最后用数值仿真证实了理论分析的结果.  相似文献   

11.
The nonlinear behavior of an inclined cable subjected to a harmonic excitation is investigated in this paper. The Galerkin’s method is applied to the partial differential governing equations to obtain a two-degree-of-freedom nonlinear system subjected to harmonic excitation. The nonlinear systems in the presence of both external and 1:1 internal resonances are transformed to the averaged equations by using the method of averaging. The averaged equations are numerically examined to obtain the steady-state responses and chaotic solutions. Five cascades of period-doubling bifurcations leading to chaotic solutions, 3-periodic solutions leading to chaotic solution, boundary crisis phenomena, as well as the Shilnikov mechanism for chaos, are observed. In order to study the global dynamics of an inclined cable, after determining the averaged equations of motion in a suitable form, a new global perturbation technique developed by Kova?i? and Wiggins is used. This technique provides analytical results for the critical parameter values at which the dynamical system, through the Shilnikov type homoclinic orbits, possesses a Smale horseshoe type of chaos.  相似文献   

12.
参数激励耦合系统的复杂动力学行为分析   总被引:3,自引:0,他引:3  
分析了耦合van der Pol振子参数共振条件下的复杂动力学行为.基于平均方程,得到了参数平面上的转迁集,这些转迁集将参数平面划分为不同的区域,在各个不同的区域对应于系统不同的解.随着参数的变化,从平衡点分岔出两类不同的周期解,根据不同的分岔特性,这两类周期解失稳后,将产生概周期解或3—D环面解,它们都会随参数的变化进一步导致混吨.发现在系统的混沌区域中,其混吨吸引子随参数的变化会突然发生变化,分解为两个对称的混吨吸引子.值得注意的是,系统首先是由于2—D环面解破裂产生混吨,该混吨吸引子破裂后演变为新的混吨吸引子,却由倒倍周期分岔走向3—D环面解,也即存在两条通向混沌的道路:倍周期分岔和环面破裂,而这两种道路产生的混吨吸引子在一定参数条件下会相互转换.  相似文献   

13.
This paper presents an analysis on the nonlinear dynamics and multi-pulse chaotic motions of a simply-supported symmetric cross-ply composite laminated rectangular thin plate with the parametric and forcing excitations. Firstly, based on the Reddy’s third-order shear deformation plate theory and the model of the von Karman type geometric nonlinearity, the nonlinear governing partial difirential equations of motion for the composite laminated rectangular thin plate are derived by using the Hamilton’s principle. Then, using the second-order Galerkin discretization, the partial differential governing equations of motion are transformed to nonlinear ordinary differential equations. The case of the primary parametric resonance and 1:1 internal resonance is considered. Four-dimensional averaged equation is obtained by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is used to give the explicit expressions of normal form. Based on normal form, the energy phase method is utilized to analyze the global bifurcations and multi-pulse chaotic dynamics of the composite laminated rectangular thin plate. The theoretic results obtained above illustrate the existence of the chaos for the Smale horseshoe sense in a parametrical and forcing excited composite laminated thin plate. The chaotic motions of the composite laminated rectangular thin plate are also found by using numerical simulation, which also indicate that there exist different shapes of the multi-pulse chaotic motions for the composite laminated rectangular thin plate.  相似文献   

14.
The multi-pulse homoclinic orbits and chaotic dynamics for an axially moving viscoelastic beam are investigated in the case of 1:2 internal resonance. On the basis of the modulation equations derived by the method of multiple scales, the theory of normal form is utilized to find the explicit formulas of normal form associated with a double zero and a pair of pure imaginary eigenvalues. The energy-phase method is employed to analyze the global bifurcations for the axially moving viscoelastic beam. The results obtained here indicate that there exist the Silnikov-type multi-pulse orbits homoclinic to certain invariant sets for the resonant case, leading to chaos in the system. Homoclinic trees which describe the repeated bifurcations of multi-pulse solutions are found. To illustrate the theoretical predictions, we present visualizations of these complicated structures.  相似文献   

15.
Cascades of period-doubling bifurcations have attracted much interest from researchers of dynamical systems in the past two decades as they are one of the routes to onset of chaos. In this paper we consider routes to onset of chaos involving homoclinic-doubling bifurcations. We show the existence of cascades of homoclinic-doubling bifurcations which occur persistently in two-parameter families of vector fields on ?3. The cascades are found in an unfolding of a codimension-three homoclinic bifurcation which occur an orbit-flip at resonant eigenvalues. We develop a continuation theory for homoclinic orbits in order to follow homoclinic orbits through infinitely many homoclinic-doubling bifurcations.  相似文献   

16.
Three-to-One Internal Resonances in Hinged-Clamped Beams   总被引:7,自引:0,他引:7  
Chin  Char-Ming  Nayfeh  Ali H. 《Nonlinear dynamics》1997,12(2):129-154
The nonlinear planar response of a hinged-clamped beam to a primary excitation of either its first mode or its second mode is investigated. The analysis accounts for mid-plane stretching, a static axial load and a restraining spring at one end, and modal damping. For a range of axial loads, the second natural frequency is approximately three times the first natural frequency and hence the first and second modes may interact due to a three-to-one internal resonance. The method of multiple scales is used to attack directly the governing nonlinear partial-differential equation and derive two sets of four first-order nonlinear ordinary-differential equations describing the modulation of the amplitudes and phases of the first two modes in the case of primary resonance of either the first or the second mode. Periodic motions and periodically and chaotically modulated motions of the beam are determined by investigating the equilibrium and dynamic solutions of the modulation equations. For the case of primary resonance of the first mode, only two-mode solutions are possible, whereas for the case of primary resonance of the second mode, single- and two-mode solutions are possible. The two-mode equilibrium solutions of the modulation equations may undergo a supercritical or a subcritical Hopf bifurcation, depending on the magnitude of the axial load. A shooting technique is used to calculate limit cycles of the modulation equations and Floquet theory is used to ascertain their stability. The limit cycles correspond to periodically modulated motions of the beam. The limit cycles are found to undergo cyclic-fold bifurcations and period-doubling bifurcations, leading to chaos. The chaotic attractors may undergo boundary crises, resulting in the destruction of the chaotic attractors and their basins of attraction.  相似文献   

17.
Fractal basin boundaries in a two-degree-of-freedom nonlinear system   总被引:1,自引:0,他引:1  
The final state for nonlinear systems with multiple attractors may become unpredictable as a result of homoclinic or heteroclinic bifurcations. The fractal basin boundaries due to such bifurcations for a four-well, two-degree-of-freedom, nonlinear oscillator under sinusoidal forcing have been studied, based on a theory of homoclinic bifurcation inn-dimensional vector space developed by Palmer. Numerical simulation is used as a means of demonstrating the consequences of the system dynamics when the bifurcations occur, and it is shown that the basin boundaries in the configuration space (x, y) become fractal near the critical value of the heteroclinic bifurcations.  相似文献   

18.
The global bifurcations and chaos of a simply supported rectangular thin plate with parametric excitation are analyzed. The formulas of the thin plate are derived by von Karman type equation and Galerkin's approach. The method of multiple scales is used to obtain the averaged equations. Based on the averaged equations, the theory of the normal form is used to give the explicit expressions of the normal form associated with a double zero and a pair of pure imaginary eigenvalues by Maple program. On the basis of the normal form, a global bifurcation analysis of the parametrically excited rectangular thin plate is given by the global perturbation method developed by Kovacic and Wiggins. The chaotic motion of thin plate is also found by numerical simulation. The project supported by the National Natural Science Foundation of China (10072004) and by the Natural Science Foundation of Beijing (3992004)  相似文献   

19.
A method for controlling nonlinear dynamics and chaos previouslydeveloped by the authors is applied to the classical Duffing oscillator.The method, which consists in choosing the best shape of externalperiodic excitations permitting to avoid the transverse intersection ofthe stable and unstable manifolds of the hilltop saddle, is firstillustrated and then applied by using the Melnikov method foranalytically detecting homoclinic bifurcations. Attention is focused onoptimal excitations with a finite number of superharmonics, because theyare theoretically performant and easy to reproduce. Extensive numericalinvestigations aimed at confirming the theoretical predictions andchecking the effectiveness of the method are performed. In particular,the elimination of the homoclinic tangency and the regularization offractal basins of attraction are numerically verified. The reduction ofthe erosion of the basins of attraction is also investigated in detail,and the paper ends with a study of the effects of control on delayingcross-well chaotic attractors.  相似文献   

20.
The chaotic dynamics of the transport equation for the L-mode to H-mode near the plasma in a tokamak is studied in detail with the Melnikov method. The transport equations represent a system with external and parametric excitation. The critical curves separating the chaotic regions and nonchaotic regions are presented for the system with periodically external excitation and linear parametric excitation, or cubic parametric excitation, respectively. The results obtained here show that there exist uncontrollable regions in which chaos always take place via heteroclinic bifurcation for the system with linear or cubic parametric excitation. Especially, there exists a controllable frequency, excited at which chaos does not occur via homoclinic bifurcation no matter how large the excitation amplitude is for the system with cubic parametric excitation. Some complicated dynamical behaviors are obtained for this class of systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号