首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The dynamical response of axially moving, partially supported, stretched viscoelastic belts is investigated analytically in this paper. The Kelvin–Voigt viscoelastic material model is considered and material, not partial, time derivative is employed in the viscoelastic constitutive relation. The string is considered as a three part system: one part resting on a nonlinear foundation and two that are free to vibrate. The tension in the belt span is assumed to vary periodically over a mean value (as it occurs in real mechanisms), and the corresponding equation of motion is derived by applying Newton’s second law of motion for an infinitesimal element of the string. The method of multiple scales is applied to the governing equation of motion, and nonlinear natural frequencies and complex eigenfunctions of the system are obtained analytically. Regarding the resonance case, the limit-cycle of response is formulated analytically. Finally, the effects of system parameters such as axial speed, excitation characteristics, viscousity and foundation modulus on the dynamical response, natural frequencies and bifurcation points of system are presented.  相似文献   

2.
An axially moving visco-elastic Rayleigh beam with cubic non-linearity is considered, and the governing partial-differential equation of motion for large amplitude vibration is derived through geometrical, constitutive, and dynamical relations. By directly applying the method of multiple scales to the governing equations of motion, and considering the solvability condition, the linear and non-linear frequencies and mode shapes of the system are analytically formulated. In the presence of damping terms, it can be seen that the amplitude is exponentially time-dependent, and as a result, the non-linear natural frequencies of the system will be time-dependent. For the resonance case, through considering the solvability condition and Routh–Hurwitz criterion, the stability conditions are developed analytically. Eventually, the effects of system parameters on the vibrational behavior, stability and bifurcation points of the system are investigated through parametric studies.  相似文献   

3.
The axially moving beams on simple supports with torsion springs are studied. The general modal functions of the axially moving beam with constant speed have been obtained from the supporting conditions. The contribution of the spring stiffness to the natural frequencies has been numerically investigated. Transverse stability is also studied for axially moving beams on simple supports with torsion springs. The method of multiple scales is applied to the partialdifferential equation governing the transverse parametric vibration. The stability boundary is derived from the solvability condition. Instability occurs if the axial speed fluctuation frequency is close to the sum of any two natural frequencies or is two fold natural frequency of the unperturbed system. It can be concluded that the spring stiffness makes both the natural frequencies and the instability regions smaller in the axial speed fluctuation frequency-amplitude plane for given mean axial speed and bending stiffness of the beam.  相似文献   

4.
We study the linear dynamics of a layered elastic beam by means of the asymptotic expansion method. The beam consists of three linearly elastic isotropic layers: the middle layer is considered to be thinner and softer than the upper and lower ones. We characterize the limit models by distinguishing three cases of natural frequencies: the low frequencies associated with flexural vibrations, the mean frequencies associated with axial vibrations and the high frequencies, associated with transversal shear and pinching vibrations.  相似文献   

5.
The stability of an axially moving beam constituted by fractional order material under parametric resonances is investigated. The governing equation is derived from Newton??s second law and the fractional derivative Kelvin constitutive relationship. The time-dependent axial speed is assumed to vary harmonically about a constant mean velocity. The resulting principal parametric resonances and summation resonances are investigated by the multi-scale method. It is found that instabilities occur when the frequency of axial speed fluctuations is close to two times the natural frequency of the beam or when the frequency is close to the sum of any two natural frequencies. Moreover, Numerical results show that the larger fractional order and the viscoelastic coefficient lead to the larger instability threshold of speed fluctuation for a given detuning parameter. The regular axially moving beam displays a higher stability than the beam constituted by fractional order material.  相似文献   

6.
The influence of swirl (flow rotation) on the stability of a rod in annular leakage flow is investigated. Under the assumption of laminar flow and plane vibrations (no whirling), it is shown that the swirl acts, in effect, as an elastic foundation with negative foundation stiffness, the magnitude being proportional to the mean circumferential flow rate squared. Consequently, swirl always lowers the critical axial flow speed in case of divergence instability of a rod of finite length. Numerical analysis is needed to predict the effect of swirl in case of flutter instability of a finite rod; this is not performed here. However, for the flutter-like instability of travelling waves in an infinite rod-channel system, it is shown analytically that swirl again always lowers the critical axial flow speed. Finally, it is found that by circumferential flow alone, the travelling waves are extinguished at a certain flow rate, followed by a divergence-like instability.  相似文献   

7.
Geometrically non-linear forced vibrations of a shallow circular cylindrical panel with a complex shape, clamped at the edges and subjected to a radial harmonic excitation in the spectral neighborhood of the fundamental mode, are investigated. Both Donnell and the Sanders–Koiter non-linear shell theories retaining in-plane inertia are used to calculate the elastic strain energy. The discrete model of the non-linear vibrations is build using the meshfree technique based on classic approximate functions and the R-function theory, which allows for constructing the sequences of admissible functions that satisfy given boundary conditions in domains with complex geometries; Chebyshev orthogonal polynomials are used to expand shell displacements. A two-step approach is implemented in order to solve the problem: first a linear analysis is conducted to identify natural frequencies and corresponding natural modes to be used in the second step as a basis for expanding the non-linear displacements. Lagrange approach is applied to obtain a system of ordinary differential equations on both steps. Different multimodal expansions, having from 15 up to 35 generalized coordinates associated with natural modes, are used to study the convergence of the solution. The pseudo-arclength continuation method and bifurcation analysis are applied to study non-linear equations of motion. Numerical responses are obtained in the spectral neighborhood of the lowest natural frequency; results are compared to those available in the literature. Internal resonances are also detected and discussed.  相似文献   

8.
In this paper, the natural frequencies and mode shapes of a rotating disk submerged and totally confined inside a rigid casing, have been obtained. These have been calculated analytically, numerically and experimentally for different axial gaps disk-casing. A simplified analytical model to analyse the dynamic response of a rotating disk submerged and confined, that has been used and validated in previous researches, is used in this case, generalised for arbitrary axial gaps disk-casing. To use this model, it is necessary to know the averaged rotating speed of the flow with respect to the disk. This parameter is obtained after an analytical discussion of the motion of the flow inside the casing where the disk rotates, and by means of CFD simulations for different axial positions of the disk. The natural frequencies of the rotating disk for the different axial confinements can be calculated following this method. A Finite Element Model has been built up to obtain the natural frequencies by means of computational simulation. The relative velocity of the flow with respect to the disk is also introduced in the simulation model in order to estimate the natural frequencies of the rotating disk. Experimental tests have been performed with a rotating disk test rig. A thin stainless steel disk (thickness of 8 mm, (h/r<5%) and mass of 7.6 kg) rotates inside a rigid casing. The position of the disk can be adjusted at several axial gaps disk-casing. A piezoelectric patch (PZT) attached on the rotating disk is used to excite the structure. Several miniature and submergible accelerometers have measured the response from the rotating frame. Excitation and measured signals are transmitted from the rotating to the stationary frame through a slip ring system. Experimental results are contrasted with the results obtained by the analytical and numerical model. Thereby, the influence of the axial gap disk-casing on the natural frequencies of a rotating disk totally confined and surrounded by a heavy fluid is determined.  相似文献   

9.
Mohamadi  Arash  Shahgholi  Majid  Ashenai Ghasemi  Faramarz 《Meccanica》2019,54(14):2227-2246

This paper investigates the linear free vibration of axially moving simply supported thin circular cylindrical shells with constant and time-dependent velocity considering the effect of viscous structure damping. Classical shell theory is employed to express strain-displacement relation. Linear elasticity theory is used to write stress–strain relation considering Hook’s Law. Governing equations in cylindrical coordinates are derived using the Hamilton principle. Equilibrium equations are rewritten with the help of Donnell–Mushtari shell theory simplification assumptions. Motion equations for displacements in axial and circumferential directions are solved analytically concerning to displacement in the radial direction. As the displacement in the radial direction is the combination of driven and companion modes, the third motion equation is discretized using the Galerkin method. The set of ordinary differential equation obtained from the Galerkin method is solved using the steady-state method, which in practice leads to the prediction of the exact frequencies of vibration. By employing multiple scale method the critical speed values of a circular cylindrical shell and several types of instabilities are discussed. The numerical results show that by increasing the mean velocity, the system always loses stability by the divergence instability in different modes, and the critical speed values of lower modes are higher than those of higher modes. As well as the unstable regions for the resonances between velocity function fluctuation frequencies and the linear combination of natural frequencies is gained from the solvability condition of second order multiple scale method. The accuracy of the method is checked against the available data.

  相似文献   

10.
The monofrequent solutions of certain autonomous second order hyperbolic differential equations with weak non-linearities are found in the case when some of the natural frequencies of the generating equation are in integral ratio. The approach use is a development of the KrylovBogoliubov-Mitropolskii method. The solution found is applied to the case of the longitudinal vibrations of a rod for which the stress-strain relation contains a small non-linear term and to the case of the vibrations of a rod with small inhomogeneities of density and elastic modulus and with small damping.  相似文献   

11.
The forced non-linear vibrations of an axially moving beam fitted with an intra-span spring-support are investigated numerically in this paper. The equation of motion is obtained via Hamilton??s principle and constitutive relations. This equation is then discretized via the Galerkin method using the eigenfunctions of a hinged-hinged beam as appropriate basis functions. The resultant non-linear ordinary differential equations are then solved via either the pseudo-arclength continuation technique or direct time integration. The sub-critical response is examined when the excitation frequency is set near the first natural frequency for both the systems with and without internal resonances. Bifurcation diagrams of Poincaré maps obtained from direct time integration are presented as either the forcing amplitude or the axial speed is varied; as we shall see, a sequence of higher-order bifurcations ensues, involving periodic, quasi-periodic, periodic-doubling, and chaotic motions.  相似文献   

12.
本文研究了旋转叶片的纵向振动和双向横振动,考虑了刚体运动和弹性振动的耦合关系,利用有限元法推导出离散系统动力学方程,从而引出陀螺特征值问题。本文就某一特例了计算了在不同转速时叶片振动的自然频率,讨论了转速对振动频率的影响。  相似文献   

13.
For the pendulum type of oscillations governed by the equation ? + φ(x) = 0, with φ(x) an odd function, it is shown that according to the linearized disturbance equation, stability is predicted if and only if dTdx = 0. where T is the period and α is the amplitude of the non-linear steady-state oscillations. From this it follows that for a given non-linear function φ(x). infinitesimal stability can at most be predicted only for certain discrete values of α. It is shown analytically that for a simple pendulum, a power-law spring and a cubic hard or soft spring, the oscillations are infinitesimally unstable for all α. It is further shown, however, that particular cases of non-linear restoring forces do exist for which infinitesimal stability is predicted for certain α's, in contrast to the actual Liapunov instability in these cases.  相似文献   

14.
Using Donnell non-linear shallow shell equations in terms of the displacements and the potential flow theory, this work presents a qualitatively accurate low dimensional model to study the non-linear dynamic behavior and stability of a fluid-filled cylindrical shell under lateral pressure and axial loading. First, the reduced order model is derived taking into account the influence of the driven and companion modes. For this, a modal solution is obtained by a perturbation technique which satisfies exactly the in-plane equilibrium equations and all boundary, continuity, and symmetry conditions. Finally, the equation of motion in the transversal direction is discretized by the Galerkin method. The importance of each mode in the proposed modal expansion is studied using the proper orthogonal decomposition. The quality of the proposed model is corroborated by studying the convergence of frequency–amplitude relations, resonance curves, bifurcation diagrams, and time responses. The parametric analysis clarifies the influence of the lateral and axial loads on the non-linear vibrations and stability of the liquid-filled shell. Finally, the global response of the system is investigated in order to quantify the degree of safety of the shell in the presence of external perturbations through the use of bifurcation diagrams and basins of attraction. This allows one to evaluate the safety and dynamic integrity of the cylindrical shell in a dynamic environment.  相似文献   

15.
Dynamical analysis of axially moving plate by finite difference method   总被引:1,自引:0,他引:1  
The complex natural frequencies for linear free vibrations and bifurcation and chaos for forced nonlinear vibration of axially moving viscoelastic plate are investigated in this paper. The governing partial differential equation of out-of-plane motion of the plate is derived by Newton’s second law. The finite difference method in spatial field is applied to the differential equation to study the instability due to flutter and divergence. The finite difference method in both spatial and temporal field is used in the analysis of a nonlinear partial differential equation to detect bifurcations and chaos of a nonlinear forced vibration of the system. Numerical results show that, with the increasing axially moving speed, the increasing excitation amplitude, and the decreasing viscosity coefficient, the equilibrium loses its stability and bifurcates into periodic motion, and then the periodic motion becomes chaotic motion by period-doubling bifurcation.  相似文献   

16.
Non-linear vibrations of axially moving beam with time-dependent tension are investigated in this paper. The beam material is modelled as three-parameter Zener element. The Galerkin method and the fourth order Runge-Kutta method are used to solve the governing non-linear partial-differential equation. The effects of the transport speed, the tension perturbation amplitude and the internal damping on the dynamic behaviour of the system are numerically investigated. The Poincare maps and bifurcation diagrams are constructed to classify the vibrations. For small values of the transport speed and the amplitude of periodic perturbation the system is asymptotically stable with its response tending to zero. With the increase of parameters one can observe the coexistence of attractors. Regular and chaotic motion occur when the internal damping increases.  相似文献   

17.
This work explores the steady-state periodic transverse responses with their stabilities of axially accelerating viscoelastic strings. Longitudinally varying tension due to the axial acceleration is recognized in the modeling, while the tension was approximatively assumed to be longitudinally uniform in previous investigations. Exact internal resonances are highlighted in the analysis, while the resonances have been neglected in all available works. A governing equation of transverse nonlinear vibration is derived from the generalized Hamilton principle and the Kelvin viscoelastic model on the assumption that the string deformation is not infinitesimal, but still small. The axial speed is supposed to be a small simple harmonic fluctuation about the constant mean axial speed. The method of multiple scales is applied to solve the governing equation in the parametric resonances when the axial speed fluctuation frequency approaches the first three natural frequencies of the linear generating system based on 1–3 term truncations. The amplitude, the existence conditions, and the stability are determined, and the effects of the viscosity, the mean axial speed, the axial speed fluctuation amplitude, and the axial support rigidity on the amplitude and the existence are examined via the numerical examples. It is found that the 1-term, the 2-term, and the 3-term truncations yield the qualitatively same and the quantitatively close results in the case that there exist the exact internal resonances among the first three frequencies.  相似文献   

18.
The method of influence function is applied to the solution of the boundary-value problem on the free transverse vibrations of a vertical cantilever and a bar subjected to axial loads. To demonstrate the capabilities of the method, a cantilever with the free end under two types of loading — point forces (conservative and follower) and a load distributed along the length (dead load) — is analyzed. A characteristic equation in the general form, which does not depend on the cantilever shape and on the type of axial load, is given. The Cauchy influence function depends on the cantilever shape and the type of axial load. As an example, a tapered cantilever subjected to conservative and follower forces and an elastically supported bar under the dead load are considered in detail. The characteristic equation derived allows one to evaluate the natural frequencies and the Euler critical loads. It is shown that the calculated natural frequencies and critical forces are in a good agreement with the exact values when several terms are retained in the characteristic series. The high accuracy of the method is also confirmed  相似文献   

19.
In this article, transverse free vibrations of axially moving nanobeams subjected to axial tension are studied based on nonlocal stress elasticity theory. A new higher-order differential equation of motion is derived from the variational principle with corresponding higher-order, non-classical boundary conditions. Two supporting conditions are investigated, i.e. simple supports and clamped supports. Effects of nonlocal nanoscale, dimensionless axial velocity, density and axial tension on natural frequencies are presented and discussed through numerical examples. It is found that these factors have great influence on the dynamic behaviour of an axially moving nanobeam. In particular, the nonlocal effect tends to induce higher vibration frequencies as compared to the results obtained from classical vibration theory. Analytical solutions for critical velocity of these nanobeams when the frequency vanishes are also derived and the influences of nonlocal nanoscale and axial tension on the critical velocity are discussed.  相似文献   

20.
This work is concerned with the thermo-electro-mechanical coupling transverse vibrations of axially moving piezoelectric nanobeams which reveal potential applications in self-powered components of biomedical nano-robot. The nonlocal theory and Euler piezoelectric beam model are employed to develop the governing partial differential equations of the mathematical model for axially moving piezoelectric nanobeams. The natural frequencies of nanobeams under simply supported and fully clamped boundary constraints are numerically determined based on the eigenvalue method. Subsequently, some detailed parametric studies are presented and it is shown that the nonlocal nanoscale effect and axial motion effect contribute to reduce the bending rigidity of axially moving piezoelectric nanobeam and hence its natural frequency decreases within the framework of nonlocal elasticity. Moreover, the natural frequency decreases with increasing the positive external voltage, axial compressive force and change of temperature, while increases with increasing the axial tensile force. The critical speed and critical axial compressive force are determined and the dynamical buckling behaviors of axially moving piezoelectric nanobeams are indicated. It is concluded the nonlocal nanoscale parameter plays a remarkable role in the size-dependent natural frequency, critical speed and critical axial compressive force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号