首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于非线性光学晶体的混频理论,利用CsLiB6O10(CLBO)晶体和K2Al2B2O7(KABO)晶体获得了紫外相干光源,详细比较了两种晶体在Ⅰ类相位匹配下的混频性能,包括混频相位匹配角、有效非线性系数、光波走离角、允许角和允许波长等参量.结果表明,KABO晶体比CLBO晶体的有效非线性系数小,其它性能均与CLBO晶体接近.这对于两种晶体用于产生紫外激光的实验研究提供了重要的理论依据.考虑到KABO晶体较好的物化性质以及不潮解这一显著特征,KABO晶体可能是最有希望实现实用化的紫外混频晶体.  相似文献   

2.
毛小洁 《中国光学》2015,8(2):182-190
高功率皮秒紫外激光器在高精密加工、激光医疗、光电对抗和光伏产业等领域有重要应用,近年来成为固体激光新光源研究热点。本文对国内外基于和频技术的高功率皮秒紫外激光器研究新进展进行了归纳和总结。首先,阐述了和频工作原理,介绍了和频产生皮秒紫外激光的非线性晶体;然后,介绍了国内外高功率皮秒紫外激光器的新进展,包括:高功率皮秒紫外激光器、高峰值功率皮秒紫外激光器、高功率和高峰值功率皮秒紫外激光器。最后,展望了高功率皮秒紫外激光器的进一步发展及应用。归纳和总结表明:高功率皮秒紫外激光器在国外较成熟,国内在该领域的研究刚刚起步。光子晶体光纤和碟片激光器输出基频光的皮秒紫外激光器有突出的优势,已成为皮秒紫外激光产业的主力军。  相似文献   

3.
范灏然  陈曦  郑磊  谢文侠  季鑫  郑权 《中国光学》2023,(6):1318-1323
为了提高半导体检测用深紫外激光器的检测效率,需要搭建高功率、高重频257 nm深紫外皮秒激光器实验平台。本文以光子晶体光纤放大器和腔外四倍频结构为基础,进行了257 nm深紫外激光器的实验研究。种子源采用中心波长为1 030 nm、脉冲宽度为50 ps的光纤激光器,输出功率为20 mW,重复频率为19.8 MHz。通过两级掺镱双包层(65μm/275μm)光子晶体光纤棒放大结构,获得了1 030 nm高功率基频光。利用二倍频晶体LBO、四倍频晶体BBO,采用腔外倍频方式获得了257 nm深紫外激光。种子源通过两级光子晶体光纤放大器输出的1 030 nm基频光,输出功率为86 W,经过激光聚焦系统后,倍频得到二次谐波515 nm激光输出功率为47.5 W,四次谐波257 nm深紫外激光输出功率为5.2 W,四次谐波转换效率为6.05%。实验结果表明,该结构可获得高功率257 nm深紫外激光输出,为提高半导体检测用激光器的检测效率提供了新思路。  相似文献   

4.
基于非线性光学晶体的混频理论,利用CsLiB6O10(CLBO)晶体和K2Al2B2O7(KABO)晶体获得了紫外相干光源,详细比较了两种晶体在Ⅰ类相位匹配下的混频性能,包括混频相位匹配角、有效非线性系数、光波走离角、允许角和允许波长等参量.结果表明,KABO晶体比CLBO晶体的有效非线性系数小,其它性能均与CLBO晶体接近.这对于两种晶体用于产生紫外激光的实验研究提供了重要的理论依据.考虑到KABO晶体较好的物化性质以及不潮解这一显著特征,KABO晶体可能是最有希望实现实用化的紫外混频晶体.  相似文献   

5.
当前,全固态激光器在向万瓦级大功率方向发展的同时,也在向微型化发展。利用碟片全固态激光器可获得千瓦级以上激光,利用微片全固态激光器则可实现小体积、高密度、中小功率激光输出。获得高功率高密度激光的关键在于激光材料。本文从碟片和微片激光器的发展和对激光基质材料的要求出发,概述自激活激光晶体的研究,特别对四硼酸铝钕[NdAl3(BO3)4,简称NAB]晶体的结构、生长、性质及其作为有应用前景的小型片状激光器的候选材料作了详细的介绍。近期,采用面积为4×4 mm2,厚度为0.39 mm的微片NAB晶体,用885 nm半导体激光器为光源泵浦,获得了4.6 W的1.063 μm激光的有效输出,其斜效率达到64%,充分显示了NAB晶体作为自激活激光晶体在微片激光器中的应用前景。  相似文献   

6.
四硼酸铝钕晶体及其小型全固态激光器   总被引:1,自引:0,他引:1  
当前,全固态激光器在向万瓦级大功率方向发展的同时,也在向微型化发展。利用碟片全固态激光器可获得千瓦级以上激光,利用微片全固态激光器则可实现小体积、高密度、中小功率激光输出。获得高功率高密度激光的关键在于激光材料。本文从碟片和微片激光器的发展和对激光基质材料的要求出发,概述自激活激光晶体的研究,特别对四硼酸铝钕[NdAl3(BO3)4,简称NAB]晶体的结构、生长、性质及其作为有应用前景的小型片状激光器的候选材料作了详细的介绍。近期,采用面积为4×4 mm2,厚度为0.39 mm的微片NAB晶体,用885 nm半导体激光器为光源泵浦,获得了4.6 W的1.063μm激光的有效输出,其斜效率达到64%,充分显示了NAB晶体作为自激活激光晶体在微片激光器中的应用前景。  相似文献   

7.
报导了新型激光晶体Nd:GdVO4的结构及生长;研究了其光谱特性,得出在808nm处具有较强的吸收峰,且三个主发射峰波长分别为912.6nm、1063.1nm、1341.3nm;讨论了其热导率,认为具有很高的热导率可能是因为掺入Nd^3+后晶格畸变并不大引起的;通过与Nd:YVO4和Nd:YAG进行性能比较,证明该晶体是LD泵浦高功率激光器的理想工作物质.  相似文献   

8.
 报道了一种半导体激光列阵侧面泵浦Nd:YAG四倍频266 nm全固态紫外激光器,采用Z型腔结构,Ⅰ类临界相位匹配LBO和BBO晶体分别作为二倍频晶体和四倍频晶体。在调制频率为5 kHz时,最终获得了2.1 W的266 nm紫外激光输出,单脉冲能量420 μJ, 绿光到紫外激光的转换率为13.13%,在相同的泵浦功率下利用V型腔结构仅获得305 mW的266 nm紫外激光输出。  相似文献   

9.
报道了一种半导体激光列阵侧面泵浦Nd:YAG四倍频266 nm全固态紫外激光器,采用Z型腔结构,Ⅰ类临界相位匹配LBO和BBO晶体分别作为二倍频晶体和四倍频晶体。在调制频率为5 kHz时,最终获得了2.1 W的266 nm紫外激光输出,单脉冲能量420 μJ, 绿光到紫外激光的转换率为13.13%,在相同的泵浦功率下利用V型腔结构仅获得305 mW的266 nm紫外激光输出。  相似文献   

10.
CsLiB6O10晶体光学参变振荡器的光学特性   总被引:3,自引:0,他引:3  
王丽  门艳彬 《光学学报》2004,24(4):99-502
根据三波耦合过程中的能量和动量守恒、晶体的塞耳迈耶尔色散方程,通过数值模拟计算了213nm作CLBO光学参变振荡抽运源时,分别得到了在Ⅰ类和Ⅱ类相位匹配时参量光调谐范围为237~289nm、807~2793nm和404~2800nm。获得了在Ⅰ类匹配时的单谐振或双谐振腔的CLBO光学参变振荡转换效率都大于同等条件下的BBO光学参变振荡,Ⅱ类匹配时,CLBO晶体的转换效率略小于BBO晶体,但是CLBO光学参变振荡转换效率的最大值较BBO光学参变振荡出现于更短的紫外波段。从理论上证明了CLBO晶体是优质的深紫外透光波段非线性光学晶体。  相似文献   

11.
为了得到高效的腔外频率变换355 nm紫外激光输出,提出了一种利用3块LBO作为非线性频率变换晶体的新方案。采用LD端面泵浦Nd:YAG声光Q开关激光器作为基波源,当入射泵浦功率为25 W、调制频率12 kHz时,获得了6.2 W的1 064 nm激光输出,经过非线性频率变换后,获得了2.7 W的紫外355 nm激光输出,光-光转换率43.4%。  相似文献   

12.
邬承就 《物理》1990,19(9):519-523
掺钛宝石、金绿宝石等可见一红外高功率可调谐激光器问世,连续输出功率达数瓦;LiF等色心激光在室温工作,脉冲输出达100J .KTP和BBO取代早期非线性光学晶体,产生更高 功率和更短波长的激光.二极管泵浦固体激光器的研制成功,导致“全固体化”激光研究的新方向.  相似文献   

13.
研究了中心对称晶体中的三阶非线性频率转换,并在这类晶体中实现了紫外激光的有效输出.确定了负单轴晶体的相位匹配角公式及相应的相位匹配角.选择带有离域共轭π键的冰洲石晶体和α-BBO晶体进行实验.以飞秒激光作为基频光,在Ⅱ类相位匹配方式下,利用α-BBO晶体获得了最高单脉冲能量为37.6μJ的266nm紫外三次谐波,最高转换效率为2.5%;利用冰洲石晶体获得了最高单脉冲能量为19.3μJ的266nm紫外三次谐波,最高转换效率为1.25%.该研究验证了利用中心对称晶体的三阶非线性效应直接获得紫外激光的可行性和获得深紫外激光的可能性,为紫外非线性晶体的探索和深紫外激光的研究提供参考.  相似文献   

14.
高效腔外频率变换紫外激光器   总被引:2,自引:0,他引:2       下载免费PDF全文
 为了得到高效的腔外频率变换355 nm紫外激光输出,提出了一种利用3块LBO作为非线性频率变换晶体的新方案。采用LD端面泵浦Nd:YAG声光Q开关激光器作为基波源,当入射泵浦功率为25 W、调制频率12 kHz时,获得了6.2 W的1 064 nm激光输出,经过非线性频率变换后,获得了2.7 W的紫外355 nm激光输出,光-光转换率43.4%。  相似文献   

15.
高功率高光束质量的蓝色激光在激光显示与照明、水下通信和成像、有色金属加工等许多领域具有广泛应用前景.本文利用增益芯片底部的高反镜分布布拉格反射镜、折叠镜以及后端反射镜构成V型谐振腔,通过腔内插入非线性晶体LBO,获得了高转换效率的高功率、高光束质量蓝光输出.实验研究了非线性晶体的长度、基频激光的线宽、倍频走离角的补偿等不同因素对外腔面发射激光器腔内倍频蓝光输出功率的影响.在LBO的Ⅰ类相位匹配条件下,当晶体长度为5 mm,所用双折射滤波片厚度为1 mm时,获得超过6 W的491 nm波长蓝光输出,x和y方向的光束质量M2因子均为1.08,倍频转换效率为63%.  相似文献   

16.
为了获得高功率窄脉宽532 nm绿光激光输出,通过高重复频率声光驱动调Q技术和LD侧面泵浦Nd∶GdVO4技术,获得高功率线偏振1 064 nm激光输出.采用内腔倍频方式,对非线性晶体KTP进行频率变换,实现高功率窄脉宽绿光激光输出.在电源输入电流30 A,调Q驱动频率10 kHz的条件下,获得最高功率30 W线偏振1 064 nm激光输出,脉宽30 ns,倍频KTP晶体获得23.4 W的532 nm绿光输出,1 064 nm到532 nm转化效率为78%.实验结果表明:通过声光调Q技术和LD侧面泵浦Nd∶GdVO4技术,可以实现高功率线偏振窄脉宽1 064 nm激光输出,倍频非线性晶体KTP可获得高功率窄脉宽532 nm激光.  相似文献   

17.
为了获得高功率窄脉宽532 nm绿光激光输出,通过高重复频率声光驱动调Q技术和LD侧面泵浦Nd∶GdVO4技术,获得高功率线偏振1 064 nm激光输出。采用内腔倍频方式,对非线性晶体KTP进行频率变换,实现高功率窄脉宽绿光激光输出。在电源输入电流30 A,调Q驱动频率10 kHz的条件下,获得最高功率30 W线偏振1 064 nm激光输出,脉宽30 ns,倍频KTP晶体获得23.4 W的532 nm绿光输出,1 064 nm到532 nm转化效率为78%。实验结果表明:通过声光调Q技术和LD侧面泵浦Nd∶GdVO4技术,可以实现高功率线偏振窄脉宽1 064 nm激光输出,倍频非线性晶体KTP可获得高功率窄脉宽532 nm激光。  相似文献   

18.
8~12μm波段是大气的一个窗口,被定义为长波红外波段。该波段激光对雾、烟尘等具有较强的穿透力,在激光光电对抗、激光遥感、医疗、环境监测及光通讯领域具有重要的应用前景。本文调研了常用的8~12μm非线性频率变换晶体,以及基于非线性频率变换晶体的远红外光参量振荡器的研究进展,对国内外能实现8~12μm波段激光输出的非线性晶体及激光系统进行了系统地归纳和总结,通过分析比较得出在8~12μm波段获得的最大输出能量为毫焦量级,最大功率为瓦量级。国内该技术与国外有着不小的差距,主要受制于高重频、高功率脉冲1~3μm泵浦源技术不成熟及高性能非线性晶体材料研制基础薄弱,我国在长波远红外固体激光器领域研究进展缓慢,因此研制大尺寸、高质量远红外激光晶体及输出波长更长的远红外高功率激光器已经成为激光器未来发展方向之一。  相似文献   

19.
刘欢  巩马理 《物理学报》2009,58(10):7000-7004
报道了一台激光二极管端面抽运Nd:YVO4晶体内腔三倍频355 nm激光连续输出的全固态紫外激光器.激光腔采用紧凑型简单凹平直腔,腔长仅为70 mm.利用两块LBO晶体进行腔内倍频、和频,当注入抽运功率为2527 W时,获得最大功率为306 mW的355 nm连续波输出,光光转换效率为012%,输出功率短期不稳定性为53%,355 nm激光输出光束质量良好.通过采用内腔倍频技术和设计合理的腔参数,实现了中小功率连续输出的全固态紫外激光器的小型化、便携化,进一步拓宽了紫外激光器 关键词: 激光二极管端面抽运 内腔三倍频 连续波 355 nm激光  相似文献   

20.
高能量高转换效率355 nm紫外激光器   总被引:1,自引:1,他引:0       下载免费PDF全文
为了得到一种三倍频效率高达60%的355 nm脉冲激光器,采用曲率半径分别为2 m的凹凸高斯镜和9 m的平凹全反镜组合作为谐振腔,加以电光调Q,得到1 064 nm高光束质量激光输出,再将其进行行波放大,获得重复频率10 Hz、脉宽7.3 ns、单脉冲能量1.01 J的1 064 nm基频光输出。利用Ⅰ类相位匹配LBO晶体进行二倍频、Ⅱ类相位匹配LBO晶体进行三倍频以得到波长为355 nm的紫外光输出。通过二倍频和三倍频输出特性和非线性晶体参数的分析和实验调试,最终获得了单脉冲能量为608 mJ、脉宽为5.7 ns、线宽为2 nm的紫外激光输出。通过优化二倍频的转换效率,可使1 064 nm基频光到三倍频得到的355 nm紫外光的转换效率达60%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号