共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the adsorption of bovine serum albumin (BSA) on spherical polyelectrolyte brushes (SPB). The SPB consist of a solid polystyrene core of 100nm diameter onto which linear polyelectrolyte chains (poly(acrylic acid), (PAA)) are grafted. The adsorption of BSA is studied at a pH of 6.1 at different concentrations of added salt and buffer (MES). We observe strong adsorption of BSA onto the SPB despite the effect that the particles as well as the dissolved BSA are charged negatively. The adsorption of BSA is strongest at low salt concentration and decreases drastically with increasing amounts of added salt. The adsorbed protein can be washed out again by raising the ionic strength. The various driving forces for the adsorption are discussed. It is demonstrated that the main driving force is located in the electrostatic interaction of the protein with the brush layer of the particles. All data show that the SPB present a new class of carrier particles whose interaction with proteins can be tuned in a well-defined manner. 相似文献
2.
Spherical polyelectrolyte brushes(SPBs) consisting of polystyrene(PS) core and poly(2-aminoethyl methacrylate hydrochloride)(PAEMH) shell were prepared by photo-emulsion polymerization. Au nanoparticles(Au-NPs) with controlled size and size distribution were synthesized in situ using SPBs as nanoreactors. Via layer-by-layer deposition technique on the surface of SPBs, nano-composite particles with Au/Ag-NPs bilayer and Au/Ag/Au-NPs trilayer were prepared. The structures of the as-prepared Au/Ag multilayer SPBs were characterized by UV-Vis spectroscopy, TEM, ICP-AES and DLS. The charge reversal of the nano-composite particles observed by zeta potential confirmed the success of layer-by-layer assembly. The Au/Ag-NPs bilayer nano-composite particles showed high catalytic efficiency with an apparent activation energy of about 41.2 k J/mol in the reduction reaction of 4-nitrophenol to 4-aminophenol in the existence of sodium borohydride monitored. The catalytic activity of Au/Ag-NPs multilayer SPBs close to that of Au-NPs SPBs and much higher than that of Ag-NPs SPBs reveals its potential applications in cost-effective catalysts with high-performance. 相似文献
3.
A theoretical investigation on the pH-induced switching of mixed polyelectrolyte brushes was performed by using a molecular theory. The results indicate that the switching properties of mixed polyelectrolyte brushes are dependent on the pH values. At low pH, negatively charged chains adopt a compact conformation on the bottom of the brush while positively charged chains are highly stretched away from the surface. At high pH values, the inverse transformation takes place. The role of pH determining the polymer chains conformation and charge behavior of mixed polyelectrolyte brushes was analyzed. It is found that there exists a mechanism for reducing strong electrostatic repulsions: stretching of the chains. The H+ and OH- units play a more important role as counterions of the charged polymers do. The collapse of the polyelectrolyte chains for different pH values could be attributed to the screening of the electrostatic interactions and the counterion-mediated attractive interaction along the chains. 相似文献
4.
Weihua Wang Li Li Xuanji Yu Haoya Han Xuhong Guo 《Journal of polymer science. Part A, Polymer chemistry》2014,52(24):1681-1688
Magnetic nanoparticles (MNPs) with a size of about 2 nm are prepared in nanoreactors of spherical polyelectrolyte brushes (SPBs) consisting of a solid polystyrene (PS) core and a shell of linear poly(acrylic acid) (PAA) chains densely grafted onto the core by one end. The synthesized MNP are strongly adhered to PAA chains due to the intense interaction of chemical coordination with the carboxyl groups. The generation of MNP in SPB layer is legibly revealed by small-angle X-ray scattering (SAXS) due to the significant increase in electron density. The radial distribution of MNP in SPB is built by fitting SAXS data. Most of MNP are found to locate nearby the surface of PS core. Compared to dynamic light scattering and transmission electron microscopy, SAXS can observe the generation and distribution of MNP in SPB as well as the changes upon changing pH and salt concentration in real time. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1681–1688 相似文献
5.
Zhishuang Ye Li Li Liheng Dai Yunwei Wang Qingsong Yang Regine von Klitzing Xuhong Guo 《Journal of polymer science. Part A, Polymer chemistry》2020,58(21):3018-3030
The selective uptake of bovine serum albumin (BSA) and β-glucosidase (β-G) by annealed and quenched cationic spherical polyelectrolyte brushes (SPB) was systematically studied by combining turbidimetric titration, dynamic light scattering and small angle X-ray scattering (SAXS). These two kinds of SPB consist of a same polystyrene core and a dense shell of poly (2-aminoethyl methacrylate hydrochloride) (PAEMH) and poly [2-(methacryloyloxy) ethyl] trimethylammonium chloride (PMAETA), respectively. Results reveal that the adsorption/desorption of proteins on SPB can be easily controlled by changing external conditions (pH and ionic strength). For a particular annealed or quenched SPB, there is a significant difference of the interaction pH regions between the brush and the two proteins, and this difference can be tuned by ionic strength. At low ionic strength, quenched brushes were more suitable for selective adsorption of BSA and β-G, while annealed brushes performed better at high ionic strength. SAXS analysis demonstrated that volume exclusion effect played a remarkable role in protein uptake by both SPB, and larger proteins were more likely to be adsorbed on the outer layer of the brush. The unique core-shell structure and controllable chain types make SPB an excellent candidate in selective adsorption/separation of proteins of different sizes. 相似文献
6.
J. P. Mahalik Yubo Yang Chaitra Deodhar John F. Ankner Bradley S. Lokitz S. Michael Kilbey II Bobby G. Sumpter Rajeev Kumar 《Journal of Polymer Science.Polymer Physics》2016,54(10):956-964
Spatial dependencies of monomer volume fraction profiles of pH responsive polyelectrolyte brushes were investigated using field theories and neutron reflectivity experiments. In particular, planar polyelectrolyte brushes in good solvent were studied and direct comparisons between predictions of the theories and experimental measurements are presented. The comparisons between the theories and the experimental data reveal that solvent entropy and ion‐pairs resulting from adsorption of counterions from the added salt play key roles in affecting the monomer distribution and must be taken into account in modeling polyelectrolyte brushes. Furthermore, the utility of this physics‐based approach based on these theories for the prediction and interpretation of neutron reflectivity profiles in the context of pH responsive planar polyelectrolyte brushes such as polybasic poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA) and polyacidic poly(methacrylic acid) (PMAA) brushes is demonstrated. The approach provides a quantitative way of estimating molecular weights of the polymers polymerized using surface‐initiated atom transfer radical polymerization. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 956–964 相似文献
7.
Zhishuang Ye Li Li Fang Zhao Haoya Han Yuchuan Tian Yunwei Wang Qingsong Yang Wenting Fan Xuhong Guo 《Journal of polymer science. Part A, Polymer chemistry》2018,56(23):1577-1588
The immobilization of lysozymes (pI = 11) onto anionic spherical polyelectrolyte brushes (SPB) which consist of a solid polystyrene core and a densely grafted poly(styrene sulfonate) (PSS) shell was systematically studied by fluorescence spectroscopy and small angle X-ray scattering. Results show that the capture of lysozyme by PSS brush is a dynamic process, which involves a quick agglomeration stage and a slow rearrangement one. And lysozyme inclines to immobilize in the inner layer of the brush, and saturation of lysozyme adsorption onto the SPB is gradually reached as the protein concentration increases, proceeding from the inside to the outside of the brush layers. As increasing the pH and ionic strength, the lysozyme previously adsorbed will be partially released and migrate from the inner to the outer layer of SPB. Last competitive adsorption tests between lysozyme and BSA or β-glucosidase were performed, indicating that besides electrostatic interaction counterion release force also plays an important role in protein adsorption. SPB was proved to be ideal candidate for controllable immobilization of protein, which can be extended into various applications, such as drug delivery and protein separation. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1577–1588 相似文献
8.
Zhishuang Ye Li Li Fang Zhao Yuchuan Tian Yunwei Wang Qingsong Yang Liheng Dai Xuhong Guo 《Journal of Polymer Science.Polymer Physics》2019,57(12):738-747
The spatial correlation of counterions [Li+, Na+, Rb+, Cs+, NH4+, (CH3)4N+] with spherical polyelectrolyte brushes (SPBs), which consist of a PS core and chemically grafted PSS chains, was comprehensively studied through a combination of SAXS, DLS, and Zeta potential. Results show that the SAXS intensity profiles of the brush appears to be “insensitive” to the concentration of Na+. By contrast, introducing salt ions with a density lower than sodium [NH4+, (CH3)4N+ and Li+] into the brush layer will cause a decrease in the scattering intensity while introducing those with a higher density than sodium (Rb+ and Cs+) will cause the opposite result. As verified by the combined results of SAXS, DLS, and Zeta potential, the collapse of the brush and the enrichment of the counterions in the brush layer occur simultaneously. It was further demonstrated that the concentration of counterions enriched in the innermost layer of the brush shell can be enhanced up to hundreds of times compared with the bulk concentration, and the counterion distribution in SPB shell follows a radial attenuation distribution. SAXS is confirmed to be powerful in probing the enrichment and distribution of counterions within SPB. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 738–747 相似文献
9.
Qingsong Yang Li Li Liang Sun Zhishuang Ye Yunwei Wang Xuhong Guo 《Journal of polymer science. Part A, Polymer chemistry》2021,59(19):2201-2211
The integration of nanozyme and natural enzyme for cascade reactions has attracted great attention due to their huge potential applications in detection, biomedicine, and catalysis. Here the novel cascade bio-platforms were fabricated by using spherical poly[(2-methacryloyloxyethyl)trimethyl ammonium chloride] (PMOTA) brushes (SPB) as nanoreactors to prepare platinum nanoparticles in situ and as nanocarriers to immobilize glucose oxidase (GOX). The generated Pt nanoparticles possess high stability and peroxidase-like properties, which can catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H2O2 to generate blue colored oxidized TMB (oxTMB). And the absorbed GOX can specifically catalyze the oxidation of glucose into gluconic acid and H2O2, while the produced H2O2 is subsequently catalyzed by the Pt nanozymes. Thus, the co-immobilized Pt nanozymes and GOX within SPB (SPB@Pt@GOX) acted as effective biosensors for colorimetric detection of glucose showing high selectivity and great feasibility. This work demonstrates a facile and general strategy to use SPB as bio-platforms to integrate nanozymes and natural enzymes for cascade reactions. 相似文献
10.
Sergio Enrique Moya Joseba Irigoyen 《Journal of polymer science. Part A, Polymer chemistry》2013,51(14):1068-1072
The combination of Quartz Crystal Microbalance and ellipsometry to quantify polyelectrolyte brush hydration and how this impacts on the study of brush collapse is discussed here. Recent articles study collapse after quantifying hydration of poly (2-methacryloyloxy ethyl trimethyl ammonium chloride) (PMETAC) and poly(potassium sulfo propyl methacrylate). Water lost increases with ionic strength but only a 50% of their water content is lost at 1 M NaCl. For PMETAC brushes the exchange of Cl− by ClO4− is more effective, causing 50% lost at 0.05 M. The hydration and water lost for PMETAC brushes synthesized from thiol monolayers with variable density of initiators from 1 to 100% show that the freely entrapped water of the brushes is around a 10%. Irrespectively of initiator percentage the brush does not lose at 1 M NaCl more than 50% of the original water content. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1068–1072 相似文献
11.
Vignesh Kasinath Dr. Yinan Fu Prof. Kim A. Sharp Prof. A. Joshua Wand 《Angewandte Chemie (International ed. in English)》2015,54(1):102-107
Aromatic amino acid side chains have a rich role within proteins and are often central to their structure and function. Suitable isotopic‐labelling strategies enable studies of sub‐nanosecond aromatic‐ring dynamics using solution NMR relaxation methods. Surprisingly, it was found that the three aromatic side chains in human ubiquitin show a sharp thermal dynamical transition at approximately 312 K. Hydrostatic pressure has little effect on the low‐temperature behavior, but somewhat decreases the amplitude of motion in the high‐temperature regime. Therefore, below the transition temperature, ring motion is largely librational. Above this temperature, a complete ring‐rotation process that is fully consistent with a continuous diffusion not requiring the transient creation of a large activated free volume occurs. Molecular dynamics simulations qualitatively corroborate this view and reinforce the notion that the dynamical character of the protein interior has much more liquid‐alkane‐like properties than previously appreciated. 相似文献
12.
13.
M. Hoffmann A. Jusufi C. Schneider M. Ballauff 《Journal of colloid and interface science》2009,338(2):566-572
We consider the ζ-potential and the effective charge of spherical polyelectrolyte brushes (SPBs) in aqueous solution in the presence of trivalent europium ions. The SPB consists of a polystyrene core of ca. 250 nm diameter onto which long chains of the strong polyelectrolyte poly(styrene sulfonate) are grafted (contour length: 82 nm). At low concentration of EuCl3 the chains are stretched to nearly full length. If the concentration of the trivalent ions is raised, the surface layer of the polyelectrolyte chains collapses. The ζ-potential of the SPB is calculated from the electrophoretic mobilities measured at different concentrations of EuCl3. At the collapse, ζ decreases by the partial neutralization of the charges by the trivalent ions. The experimental ζ-potential thus obtained agrees with the theoretical surface potential Ψtheo calculated for the effective shear plane by a variational free energy model of the SPB. 相似文献
14.
采用近红外光谱技术和二维相关分析法研究尼龙1010膜在升温过程中的结构变化. 为了排除非晶区域酰胺基团的影响, 事先对尼龙1010的样品膜进行了氘代, 并测量了其最终氘代率. 结果证明, 尼龙1010的结晶区域在升温过程中被逐渐破坏, 首先是其主链碳氢结构发生调整, 进一步影响到结合酰胺, 导致氢键作用减弱并最后生成自由胺基. 相似文献
15.
Xuejian Lyu Brandon Clark Amy M. Peterson 《Journal of Polymer Science.Polymer Physics》2017,55(8):684-691
Dynamic mechanical analysis (DMA) was used to explore the thermomechanical properties of dried polyelectrolytes and polyelectrolyte complexes (PECs) with different thermal and humidity histories. Although differences in the amount of water remaining in polyelectrolytes and PECs were small for ambient versus dessicator storage, the properties of polyelectrolyte‐based materials were drastically different for different humidity histories. Glass transition temperatures (Tgs) of poly(diallyldimethylammonium chloride) (PDADMAC) were shown to vary by 100 °C, depending on humidity and thermal histories. These parameters also change glassy storage modulus values by 100%. Furthermore, we observe that dried PDADMAC is highly lossy. DMA of dried poly(styrene sulfonate) (PSS) was more complex and did not exhibit a glass transition in the tested range. DMA of a PEC of PDADMAC and PSS revealed a humidity history‐dependent water melt in the first heating cycle, as well as storage modulus values of dried and annealed PECs that only varied by 17–26% over a 275 °C temperature range. Based on these results, we report for the first time humidity history as controlling structure and properties of polyelectrolyte‐based materials. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 684–691 相似文献
16.
Determining the structure of a protein and its transformation under different conditions is key to understanding its activity. The structural stability and activity of proteins in aqueous–organic solvent mixtures, which is an intriguing topic of research in biochemistry, is dependent on the nature of the protein and the properties of the medium. Herein, the effect of a commonly used cosolvent, dimethyl sulfoxide (DMSO), on the structure and conformational dynamics of bovine serum albumin (BSA) protein is studied by fluorescence correlation spectroscopy (FCS) measurements on fluorescein isothiocyanate (FITC)‐labeled BSA. The FCS study reveals a change of the hydrodynamic radius of BSA from 3.7 nm in the native state to 7.0 nm in the presence of 40 % DMSO, which suggests complete unfolding of the protein under these conditions. Fluorescence self‐quenching of FITC has been exploited to understand the conformational dynamics of BSA. The time constant of the conformational dynamics of BSA is found to change from 35 μs in its native state to 50 μs as the protein unfolds with increasing DMSO concentration. The FCS results are corroborated by the near‐UV circular dichroism spectra of the protein, which suggest a loss of its tertiary structure with increasing concentration of DMSO. The intrinsic fluorescence of BSA and the fluorescence response of 1‐anilinonaphthalene‐8‐sulfonic acid, used as a probe molecule, provide information that is consistent with the FCS measurements, except that aggregation of BSA is observed in the presence of 40 % DMSO in the ensemble measurements. 相似文献
17.
Pawe Kdzierski W. Andrzej Sokalski Morris Krauss 《Journal of computational chemistry》2000,21(6):432-445
The physical nature of the catalytic activity exerted by various ribonuclease A active site constituents is analyzed in terms of the differential transition state stabilization approach in which activation barrier changes induced by the molecular environment are expressed by additive components defined in the theory of intermolecular interactions. Electrostatic multipole contributions seem to approximate total catalytic activity well for residues separated by contacts longer than 2.7 Å whereas at shorter distances the remaining exchange and delocalization terms are not negligible. Depending on the reaction step, the same residue may exhibit catalytic or inhibitory activity. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 432–445, 2000 相似文献
18.
34 compounds containing the SO2-N-C-N-moiety are investigated by means of infrared spectroscopy and differential scanning calorimetry to study problems of polymorphic species. There are arguments for different crystalline solids of 16 sulphonyl derivatives. The phenomenon of polymorphism can be discussed both in terms of different hydrogen bonding and conformational effects. Although two tautomers are thinkable for the compounds being investigated the sulphonylimino structure is assumed to yield the most stable state. 相似文献
19.
20.
Fang Yin 《European Polymer Journal》2008,44(11):3670-3675
Implicit solvent Brownian dynamics simulations of the structure and tribology of opposing polymer-brush covered surfaces have been carried out as a function of surface separation and solvent quality. Consistent with experiment, shear forces were found to be greater under theta solvent conditions than in a good solvent at equal relative separations (normalized by the respective height of the brushes in theta and good solvents). Much higher relative compression is required before the onset of significant shear forces in good solvent compared to theta solvent. The dependence of shear force for a given relative separation on solvent quality can be accounted for by differences in interpenetration of the brushes. When compared as a function of absolute surface separation, greater interpenetration and greater shear force are observed at large separations for the brushes in good solvent than in theta solvent, consistent with the greater brush height in good solvent. At shorter separations, corresponding to moderate to high compression, brush-brush interactions result in significant deformation of the brushes. In this regime, greater interpenetration and greater shear forces are observed in theta solvent at a given separation, in qualitative agreement with experiment. 相似文献