首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a conventional laser-diode sinusoidal phase-modulating (LD-SPM) interferometer, the wavelength of the LD is modulated by varying its injection current. The intensity modulation concurrent with the wavelength modulation leads to measurement errors. A photothermal-modulation method has been proposed to decrease the intensity change of the LD; however, this method cannot be used to measure vibration with a high frequency, and the beam diameter is too large to be used to measure minute objects. In this paper, we propose LD-SPM fiber-optic interferometer, in which the effect of the intensity change of the light source on measurement is eliminated. The diameter of the light beam is less than 0.5 mm. Using this interferometer, we measured displacements of a mirror driven by a piezoelectric transducer. The measurement repeatability is less than 1 nm.  相似文献   

2.
In sinusoidal phase modulating laser diode (LD) interferometer, the injection current of the LD is sinusoidally modulated to realize the modulation of the wavelength. However, the light intensity of LD is also modulated, which affects the measurement accuracy. An all-fiber sinusoidal phase modulating LD interferometer for real-time displacement measurement is proposed where the influence of the intensity modulation is eliminated with a new algorithm. It is made clear that an optimal depth of the sinusoidal phase modulation (SPM) exists in the algorithm. Moreover, the SPM depth is locked at the optimal value by controlling the injection current with a feedback control system. The feasibility of the proposed interferometer for displacement measurement is verified by experiments.  相似文献   

3.
In this paper, a novel laser-diode (LD) sinusoidal phase-modulating (SPM) interferometer, which utilizes a photothermal technique for LD wavelength modulation, is proposed to measure displacements with a nanometer accuracy. In conventional LD–SPM interferometers, the LD intensity modulation is concurrent with the wavelength modulation, which increases measurement errors. Using the photothermal technique, the LD wavelength modulation can be accomplished with negligible concomitant intensity modulation, and the measurement errors are thus eliminated. The computer simulations and experiment results verify the usefulness of this novel interferometer.  相似文献   

4.
In a conventional sinusoidal phase-modulating laser-diode (SPM-LD) interferometer, the wavelength of the LD is sinusoidally modulated by varying its injection current. However, the intensity modulation is associated with the wavelength modulation, which affects the measurement accuracy. We propose an SPM-LD interferometer insensitive to the intensity modulation of the light source, in which the influence of the intensity modulation is eliminated by choosing the appropriate sinusoidal phase modulation depth. Computer simulations and experiments are performed for real-time displacement measurement with the proposed SPM-LD interferometer. The measurement accuracy has been improved and the measurement repeatability is less than 1 nm. No additional components are required in our proposed method that leads to a simple system compared with the other previously proposed methods.  相似文献   

5.
利用半导体激光器 (LD)、光隔离器、光纤定向耦合器、自聚焦透镜等组成双路光纤斐索型干涉仪。采用三角波电流调制 ,上、下边沿拍频信号差动鉴相的方法 ,提高了测量灵敏度和位移响应速度 ,增大了测量范围 ;利用辅助干涉仪检测系统的相位漂移 ,并对LD发光波长进行反馈控制 ,提高了系统的稳定性 ,实现了大测量范围、高分辨率、高精度位移测量。  相似文献   

6.
Laser-diode (LD) interferometry based on heterodyne techniques is described. The developments covered include: sinusoidal phase- modulating, distance-measuring feedback and phase-shifting interferometry. The wavelength is controlled by the laser injection current and is continuously or stepwise changed to introduce a time-varying phase difference between the two beams of an interferometer with unbalanced optical path lengths. A feedback interferometer is described with electronics to stabilize the phase shift and to lock the interferometer on a preset phase condition by controlling the injection current of the LD. An automated phase-measuring interferometric system is developed in which the laser current is changed to synchronize intensity data acquisition with the clocks of a charge-coupled device. A typical experimental result shows measurements of the profile of a diamond- turned Al surface.  相似文献   

7.
In this paper, the displacement of an object is measured with a photothermal phase-modulating laser diode interferometer. A feedback control system is designed to reduce the measurement errors caused by the fluctuations in the optical wavelength of the laser diode and the vibrations of the optical components in the interferometer. A new method is proposed to enlarge the measuring range of displacement. Using this method, the measuring range is enlarged from half wavelength to nearly 125 μm and the measurement accuracy is about 1 nm. The simulation and experimental results have shown the usefulness of the method and the feedback control system.  相似文献   

8.
A two-wavelength sinusoidal phase-modulating(SPM) laser diode(LD) interferometer for nanometer accuracy measurement is proposed.To eliminate the error caused by the intensity modulation,the SPM depth of the interference signal is chosen appropriately by varying the amplitude of the modulation current periodically. Then,the refine theory is induced to the measurement,and the two-wavelength interferometer (TWI) is combined with the single-wavelength LD interferometric technique to realize static displacement measurement with nanometer accuracy.Experimental results indicate that a static displacement measurement accuracy of 5 nm can be achieved over a range of 200μm.  相似文献   

9.
Guotian He  Xiangzhao Wang 《Optik》2009,120(3):101-105
As there exist some problems with the previous laser diode (LD) real-time microvibration measurement interferometers, such as low accuracy, correction before every use, etc., in this paper, we propose a new technique to realize the real-time microvibration measurement by using the LD sinusoidal phase-modulating interferometer, analyze the measurement theory and error, and simulate the measurement accuracy. This interferometer utilizes a circuit to process the interference signal in order to obtain the vibration frequency and amplitude of the detective signal, and a computer is not necessary in it. The influence of the varying light intensity and light path difference on the measurement result can be eliminated. This technique is real-time, convenient, fast, and can enhance the measurement accuracy too. Experiments show that the repeatable measurement accuracy is less than 3.37 nm, and this interferometer can be applied to real-time microvibration measurement of the MEMS.  相似文献   

10.
A phase-stepping lateral shearing Sagnac interferometer for wavefront measurement is described. Phase shifting is implemented using a polarisation modulator operating on the wavelength independent Pancharatnam's phase allowing accurate measurement of phase maps even with broadband light. We demonstrate the interferometer by measuring a range of different wavefront shapes using both laser and white light.  相似文献   

11.
We propose a grating interferometer for step-profile altitude difference measurement. There are two main characteristics in this interferometer. The first is that the intensity distribution of the interference pattern is independent of the wavelength of the laser-diode used. No change of the intensity distribution occurs when the wavelength fluctuates. The second is that the measuring range is much larger than the wavelength of the light source because the spatial period of the grating is much larger than the wavelength. Sinusoidal phase modulating interferometry is easily applied to detect the phase variation of the interference pattern by vibrating the grating sinusoidally. The thickness of a 3.5-inch disk is measured with an accuracy of less than 0.5 μm.  相似文献   

12.
基于光纤Bragg光栅位移测量的研究   总被引:1,自引:1,他引:0       下载免费PDF全文
介绍了一种基于布喇格光纤光栅技术的位移测量方法。利用宽带光源经不同的布喇格光栅得到一种由温度稳定器控制波长稳定性的合成光源。由于系统设计的合成光源波长比常规光源的波长长,所以允许的光程差测量范崮提高了几百倍,从而使得布喇格光纤光栅的波长准确性提高了干涉仪位移测量的准确性。此外,利用光外差法马赫一曾德尔干涉仪进行了位移测量实验,得到了很好的效果。  相似文献   

13.
Laser diodes (LDs) have been applied to a phase-measuring interferometer through the wavelength tunability of LDs by controlling their currents. Laser-diode interferometers based on a heterodyne technique are reviewed. A two-wavelength laser-diode interferometer is demonstrated with current control of dual LDs in opposite directions. A synthetic wavelength makes it possible to extend the range of interferometric measurements. The wavelength is controlled by the laser injection current and is stepwise or rampwise changed to introduce a time-varying phase difference between the two beams of an interferometer with unbalanced optical path lengths. The optical output is demodulated with a phase-extraction algorithm. Systematic phase errors caused by the LD-power variation and by the difference between the beat frequency and ramp frequency are analyzed. A feedback interferometer with electronics is used to eliminate the phase error by locking the interferometer on a preset phase. Typical experimental results are shown.  相似文献   

14.
Golub I  Simova E 《Optics letters》2002,27(19):1681-1683
A novel configuration for measuring femtosecond polarization mode dispersion (PMD) with a pi-shifted Sagnac interferometer is studied. The advantages of this configuration include a response that is independent of the orientation of the device under test. This independence allows characterization of the first-and second-order PMD by measurement of the wavelength dependence of the differential group delay and of the orientation of the device's principal states of polarization. The method provides an extension of the dynamic range of the Sagnac interferometer technique to few-femtosecond PMD measurement.  相似文献   

15.
We present a white-light spectral interferometric technique employing a low-resolution spectrometer for a direct measurement of the dispersion of the ordinary and extraordinary group refractive indices of a quartz crystal over the wavelength range approximately from 480 to 860 nm. The technique utilizes a dispersive Michelson interferometer with the quartz crystal of known thickness to record a series of spectral interferograms and to measure the equalization wavelength as a function of the displacement of the interferometer mirror from the reference position, which corresponds to a balanced non-dispersive Michelson interferometer. We confirm that the measured group dispersion agrees well with that described by the dispersion equation proposed by Ghosh. We also show that the measured mirror displacement depends, in accordance with the theory, linearly on the theoretical group refractive index and that the slope of the corresponding straight line gives precisely the thickness of the quartz crystal.  相似文献   

16.
Methods and schemes to inspect the EUV mirror shape are developed on the basis of a point diffraction interferometer with computer processing of interferograms. A measurement accuracy to within 0.001 of a wavelength in the visual range is achieved.  相似文献   

17.
为了研究可用于纳米、亚纳米精度的非线性误差校准系统,采用差拍F-P干涉法,在中国计量科学研究院研制的差拍F-P干涉仪基础上,设计并制作了适用于该系统的密封干涉光路的真空系统。通过与电容式测微仪的比对实验,证明了系统的抗干扰能力得到了改善,在大于半波长的测量范围内,系统的非线性度优于3.86nm。  相似文献   

18.
In this paper, the pulsed injection method is extended to measure the chip temperature of various packaged laser modules, such as the DFB laser modules, the FP laser modules, and the EML laser modules. An optimal injection condition is obtained by investigating the dependence of the lasing wavelength on the width and period of the injection pulse in a relatively wide temperature range. The small-signal frequency responses and large-signal performances of packaged laser modules at different chip temperature are measured. The adiabatic small-signal modulation characteristics of packaged LD are first extracted. In the large-signal measurement, the effects of chip temperature, bias current and driving signal on the performances of the laser modules are discussed. It has been found that the large-signal performances of the EML modules depend on the different red-shift speeds of the DFB and EAM sections as chip temperature varying, and the optimal characteristics may be achieved at higher temperature.  相似文献   

19.
针对迈克尔逊干涉实验中测出的He-Ne激光的波长值总是比真实值偏大的问题,分析了用迈克尔逊干涉仪测量He-Ne激光波长时的实验误差来源,发现实验光路调整的不理想以及仪器读数装置中残留的螺纹空程差是导致λ值偏大的主要原因。在此基础上提出了相应的改进办法,并且对测量不确定度进行了合理的估算。  相似文献   

20.
李昭莹  谢芳  马森  刘义秦 《光学学报》2012,32(6):612004-95
研究一种能够进行远程及绝对测量的光纤低相干干涉传感系统。该系统包含两个光纤干涉仪,其中一个光纤干涉仪置于被测场中感应被测量的变化,可实现远程测量;另一个光纤干涉仪解调被测量的值。运用波分复用技术,使用于解调的光纤干涉仪同时工作于低相干干涉和高相干干涉状态。用低相干干涉信号决定被测量的幅值,对被测量实现绝对测量,并使测量量程不受波长限制;同时,用高相干干涉信号对被测量进行高精度的测量。系统的测量量程为6mm,测量分辨率小于1nm,位移实验结果的线性相关系数R为0.99。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号