首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The homogeneous alignment of a liquid crystal material, 4'-n-octyl-4-cyanobiphenyl (8CB), was achieved by polyimide Langmuir-Blodgett (LB) films. Scanning electron microscopy and scanning tunnelling microscopy measurements show that the alignment of the polyimide LB films with a grooveless surface occurs due to the orientation of the polyimide chains. We directly observe 8CB monolayers on oriented polyimide LB films. We find that the monolayers form a two dimensional crystalline structure and the 8CB molecules are always aligned along the chain direction of the polyimide. The results show that the alignment of 8CB molecules arises by an epitaxial growth on the oriented polyimide LB films.  相似文献   

2.
Abstract

The homogeneous alignment of a liquid crystal material, 4′-n-octyl-4-cyanobiphenyl (8CB), was achieved by polyimide Langmuir-Blodgett (LB) films. Scanning electron microscopy and scanning tunnelling microscopy measurements show that the alignment of the polyimide LB films with a grooveless surface occurs due to the orientation of the polyimide chains. We directly observe 8CB monolayers on oriented polyimide LB films. We find that the monolayers form a two dimensional crystalline structure and the 8CB molecules are always aligned along the chain direction of the polyimide. The results show that the alignment of 8CB molecules arises by an epitaxial growth on the oriented polyimide LB films.  相似文献   

3.
Y. R. Shen 《Liquid crystals》2013,40(2):635-643
It is shown that optical second harmonic generation can be used to probe a number of important properties of liquid crystals: second order non-linearity of liquid crystal molecules, polar ordering and orientation of liquid crystal monolayers at various interfaces, and bulk alignment of molecules in supported and freely suspended films. Surface effects on bulk alignment can also be investigated.  相似文献   

4.
Highly ordered molecular monolayers at the solid/liquid interfaces play a critical role in many technologically important areas, such as lubrication, adhesion, molecular recognition and chemical reactions. Although there are a number of results on the monolayers of organic molecules physisorbed on the solid surfaces being reported, the role of the substrate lattice parameters, the substrate structures and the defects in the formation of the highly ordered monolayers has not yet well explored. In this paper, we reported the scanning tunneling microscopy (STM) studies of the self-assembling phenomenon of n-alkanes in the interfaces between n-alkane solutions and the Au(111) surfaces.  相似文献   

5.
Scanning force (SFM) and scanning tunneling (STM) microscopies are suitable techniques for the investigation of the structure of organic monolayers. Results are presented on thioalkane monolayers and thiolipid monolayers on gold. Both molecules attach covalently to the gold surface. STM images of the self assembled dodecanethiol layer display the molecular order of the film and reveal the presence of defects at the molecular scale. Moreover, domains and domain boundaries can be distinguished. Thiolipid layers on gold have been observed by SFM. The monolayer separates in solid-analogous star shaped domains and fluid-analogous domains. Imaging under water demonstrates the stability of the layer.  相似文献   

6.
The liquid/solid interface provides an ideal environment to investigate self-assembly phenomena, and scanning tunneling microscopy (STM) is the preferred methodology to probe the structure and the properties of physisorbed monolayers on the nanoscale. Physisorbed monolayers are of relevance in areas such as lubrication, patterning of surfaces on the nanoscale, and thin film based organic electronic devices, to name a few. It's important to gain insight in the factors which control the ordering of molecules at the liquid/solid interface in view of the targeted properties. STM provides detailed insight into the importance of molecule-substrate (epitaxy) and molecule-molecule interactions (hydrogen bonding, metal complexation, and fluorophobic/fluorophilic interactions) to direct the ordering of both achiral and chiral molecules on the atomically flat surface. By controlling the location and orientation of functional groups, chemical reactions can be induced at the liquid/solid interface, via external stimuli, such as light, or by controlled manipulation with the STM tip. The electronic properties of the self-assembled physisorbed molecules can be probed by taking advantage of the operation principle of STM, revealing spatially resolved intramolecular differences within these physisorbed molecules.  相似文献   

7.
Thin, platelike single crystals of p-terphenyl (PT) doped with terrylene impurity molecules can be prepared by spin-coating from solution. Strikingly, individual terrylene molecules can be observed traveling inside the crystal over distances of several micrometers by using single-molecule fluorescence imaging at room temperature. Analysis of the motion by single-particle tracking and correlation methods indicates that the molecules act as nanoprobes by exploring long, thin crack-like defects with correlated orientations, defects that can be difficult to observe by other means. Apparently, the regions accessible to the moving molecules are in the interior of the crystal and hence are partially protected from oxidation. In addition to the traveling molecules, which photobleach in times on the order of 32 s under continuous irradiation at 2 kW/cm2, two other spatially fixed populations are observed: one with transition dipole oriented along the c-axis of the crystal with a characteristic photobleaching time greater than 32 h, and one with a characteristic photobleaching time of 18 min.  相似文献   

8.
制备了系列含氟光敏单体材料, 六氟双酚A双肉桂酸酯(6F-BADE)与含二氟亚甲基结构的肉桂酸酯(FDE-n, n=2, 3, 4). 材料在线性偏振紫外光辐照下均可发生定向光交联反应, 通过红外光谱和凝胶渗透色谱跟踪检测, 表明光交联类型为[2+2]环加成. 单体光聚后形成的取向膜对液晶分子排列效果不同, 6F-BADE取向膜诱导液晶分子垂直排列, FDE-n取向膜诱导液晶分子平行排列. 用原子力显微镜对取向膜表面进行表征, 均未观察到明显的各向异性分布现象. 应用量子力学半经验方法AM1分析发现单体分子极性有较大差异, 认为分子极性的差异是诱导液晶取向不同的主要原因.  相似文献   

9.
《Chemical physics letters》2006,417(1-3):22-27
Copper-Octaethyl Porphyrin self-assembly has been studied on NaCl islands, 1–3 monolayers thick, grown on metal substrates. Extended ordered molecular monolayers are observed for the first time on ultrathin insulator films. The assembly occurs in hierarchical fashion, starting on the metal substrate, then followed by assembly on the first and second NaCl layers, clearly demonstrating a decrease in adsorption energy for increasing insulator layer thickness. The underlying mechanisms are discussed on the basis of molecule–substrate interactions. Voltage-dependent STM images reveal differences of the electronic structure for molecules adsorbed on metal and NaCl/metal areas.  相似文献   

10.
Chiral induction and amplification in surface‐confined supramolecular monolayers are investigated at the liquid–solid interface. Scanning tunneling microscopy (STM) proves that achiral molecules can self‐assemble into globally chiral patterns through a variety of approaches, including induction by chiral solvents or by a novel chiral amplification method. Our study demonstrates the aptness of both approaches, which have already been applied to (supramolecular) polymers in solution, to create chiral supramolecular monolayers at the liquid–solid interface.  相似文献   

11.
汤儆  M.Petri  L.A.Kibler  D.M.Kolb 《电化学》2003,9(2):126-132
应用电化学扫描隧道显微镜(ECSTM)研究了PdSO4溶液中Au(111)电极表面Pd的电化学沉积过程.实验表明,Pd的沉积初始阶段在Au(111)电极表面依次生成两个满单层Pd膜,这一实验结果不仅与电位扫描一致,而且更进一步地证明了起初的两个Pd单层形成过程乃以层~层外延方式生长.高分辨的原子图像表明吸附的SO2-4离子在外延生长的Pd膜表面形成了有序的(3×7)R19°结构.  相似文献   

12.
Functional groups in the molecule play an important role in the molecular o rganization process.To reveal the influence of functional groups on the self-assembly at interface,herein,the self-assembly structures of three liquid crystal molecules,which only differ in the functional groups,are explicitly characterized by using scanning tunneling microscopy(STM).The high-resolution STM images demonstrate the difference between the supramolecular assembly structures of three liquid crystal molecules,which attribute to the hydrogen bonding interaction and π-π stacking interaction between different functional groups.The density functional theory(DFT) results also confirm the influence of these functional groups on the self-assemblies.The effort on the self-assembly of liquid crystal molecules at interface could enhance the understanding of the supramolecular assembly mechanism and benefit the further application of liquid crystals.  相似文献   

13.
Large molecules adsorbed on surfaces can be analyzed by scanning tunneling microscopy (STM) under various environmental conditions: on a dry surface in air or vacuum, and at the solid‐liquid interface. However, can measurements under dissimilar conditions be compared, e. g., when sample A was studied at the solid‐liquid interface and sample B in a dry environment? Only rarely can the same substance be examined with more than one approach, since completely different set‐up and preparations are necessary. Furthermore, few substances are suitable for several methods of sample preparation and characterization. We have chosen a large, flexible, nonplanar molecule, namely an alkoxy‐substituted second‐generation dendritic compound with a chiral core unit, which is peculiar for its ‘hourglass' conformation. The assembly properties have been explored by STM both in solution‐cast self‐organized monolayers (SOMs) and multilayer films, as well as at the solid‐liquid interface. The complexity and limits of the three approaches applied to our hourglass‐shaped dendritic compound are discussed. Depending on the approach and environmental conditions, several quality levels of image resolution could be achieved; measurements carried out at low temperatures led to highest resolution on the aromatic parts of the molecule. A comparison of equally sized images obtained under these varying conditions reveals not only different packing arrangements, but also spots of unlike shape. Therefore, when the approach, preparation, and/or environmental conditions are not the same, STM measurements of different compounds have to be compared with greatest care.  相似文献   

14.
The possibility of using surface-adsorbed monolayers on oxidized GaAs single crystals is investigated to explore liquid crystal (LC) wettability and alignment. A technological process is developed to chemically activate the GaAs surface with a view to perform the infiltration of tunable two-dimensional (2-D) photonic crystals with LC materials. We demonstrate a vapor growth method to fabricate self-organized monolayers of carboxylated derivatives on plasma-activated surfaces. Our monolayers strongly increase the wettability of liquid crystal surfaces and may be helpful in achieving the infiltration of 2-D GaAs photonic crystals. Two types of molecular families were studied in this work: benzoic acids and fatty acids. Para-substituted benzoic acids with a wide range of electrical dipoles allow adsorption to be followed by measuring the surface potential of the grafted substrates using the Kelvin probe technique. These model compounds yield important information on the grafting conditions and the stability of the layers. Surface-adsorbed fatty acids are well-known to produce hydrophobic surfaces. The water contact angles measured on modified GaAs surfaces are equivalent to the ones measured on classical alkanethiol layers on gold.  相似文献   

15.
The supramolecular packing mode of physisorbed monolayers built up by chiral isophthalic acid derivatives and coadsorbed achiral solvent molecules was imaged at the liquid/graphite interface with scanning tunneling microscopy (STM). The picture on the right shows the submolecularly resolved STM image of an enantiomorphous domain composed of the R enantiomer of the isophthalic acid derivative studied and 1-heptanol molecules; the latter express the chirality of the monolayer. Upon adsorption a racemic mixture is separated into enantiomorphous domains.  相似文献   

16.
We present a molecular dynamics simulation study of the crystal growth of methane hydrates in the presence of model silica (SiO(2)) surfaces. The crystal growth under apparent steady-state conditions shows a clear preference for bulk solution. We observe rather disordered water arrangements very close to the silica surface within about 5 ? in both liquid and crystalline regions of the system. These disordered structures have dynamic and structural properties intermediate between those exhibited by molecules in bulk liquid and crystalline phases. The presence of methane molecules appears to help stabilize these structures. We observe that under appropriate conditions, the hydroxylated silica surfaces can serve as a source of methane molecules which can help promote hydrate growth near the surfaces.  相似文献   

17.
The glass transition temperature (T(g)) of thin films is reduced by nanoconfinement, but it is also influenced by the free surface and substrate interface. To gain more insights into their contributions, dewetting behaviors of n-pentane, 3-methylpentane, and toluene films are investigated on various substrates as functions of temperature and film thickness. It is found that monolayers of these molecules exhibit sub-T(g) dewetting on a perfluoro-alkyl modified Ni substrate, which is attributable to the evolution of a 2D liquid. The onset temperature of dewetting increases with film thickness because fluidity evolves via cooperative motion of many molecules; sub-T(g) dewetting is observed for films thinner than 5 monolayers. In contrast, monolayers wet substrates of graphite, silicon, and amorphous solid water until crystallization occurs. The crystallites exhibit autophobic dewetting on the substrate covered with a wetting monolayer. The presence of premelting layers is inferred from the fact that n-pentane crystallites disappear on amorphous solid water via intermixing. Thus, the properties of quasiliquid formed on the crystallite surface differ significantly from those of the 2D liquid formed before crystallization.  相似文献   

18.
Some dye molecules self-aggregate to exhibit a lyotropic columnar liquid crystal state (chromonic liquid crystal) via pi stacking in relatively highly concentrated aqueous solutions. In this work, the chromonic liquid crystal structure was immobilized, for the first time, with silica networks by way of the sol-gel condensation process. The immobilization of the columnar structure was successfully attained in the presence of 2-(2-aminoethoxy)ethanol, which favorably mediates the interface between the anionic charge of the dye aggregates and the silica network. Without this molecule, the sol-gel process gave rise to a transformation from columnar to lamellar structure. Both spin-coating and dip-coating methods gave essentially the same results. In the dip-coated films, the dye molecules were aligned over a large area with orientation orthogonal to the lifting direction.  相似文献   

19.
The competition between intermolecular interactions and lateral variations in the molecule-substrate interactions has been studied by scanning tunneling microscopy (STM), comparing the phase formation of (sub)monolayers of the organic molecule 2,4'-BTP on buckled graphene/Ru(0001) and Ag(111) oriented thin films on Ru(0001). On the Ag films, the molecules form a densely packed 2D structure, while on graphene/Ru(0001), only the areas between the maxima are populated. The findings are rationalized by a high corrugation in the adsorption potential for 2,4'-BTP molecules on graphene/Ru(0001). These findings are supported by temperature programmed desorption (TPD) experiments and theoretical results.  相似文献   

20.
The two-dimensional (2D) phases of fatty-acid monolayers (hexadecanoic, octadecanoic, eicosanoic, and docosanoic acids) have been studied at the interface of a nematic liquid crystal (LC) and water. When observed between crossed polarizers, the LC responds to monolayer structure owing to mesoscopic alignment of the LC by the adsorbed molecules. Similar to Langmuir monolayers at the air/water interface, the adsorbed monolayer at the nematic/water interface displays distinct thermodynamic phases. Observed are a 2D gas, isotropic liquid, and two condensed mesophases, each with a characteristic anchoring of the LC zenithal tilt and azimuth. By varying the monolayer temperature and surface concentration we observe reversible first-order phase transitions from vapor to liquid and from liquid to condensed. A temperature-dependent transition between two condensed phases appears to be a reversible swiveling transition in the tilt azimuth of the monolayer. Similar to monolayers at the air/water interface, the temperature of the gas/liquid/condensed triple-point temperature increased by about 10 degrees C for a two methylene group increase in chain length. However, the absolute value of the triple-point temperatures are depressed by about 40 degrees C compared to those of analogous monolayers at the air/water interface. We also observe a direct influence by the LC layer on the mesoscopic and macroscopic structure of the monolayer by analyzing the shapes and internal textures of gas domains in coexistence with a 2D liquid. An effective anisotropic line tension arises from elastic forces owing to deformation of the nematic director across phase boundaries. This results in the deformation of the domain from circular to elongated, with a distinct singularity. The LC elastic energy also gives rise to transition zones displaying mesoscopic realignment of the director tilt or azimuth between adjacent regions with a sudden change in anchoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号