首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pentaerythrityl tetraethylenediamine (PETEDA) dendrimer was synthesized from pentaerythrityl tetrabromide and ethylenediamine. Its molecular structure was characterized by elemental analysis, Fourier transform infrared resonance (FT-IR) and hydrogen nuclear magnetic resonance (1H NMR) spectroscopy. The composite membranes for selectively permeating CO2 were prepared by using PETEDA-PVA blend polymer as the active layer and polyethersulfone (PES) ultrafiltration membrane as the support layer and their permselectivity was tested by pure CO2 and CH4 gases and the gas mixture containing 10 vol.% CO2 and 90 vol.% CH4, respectively. For pure gases, the membrane containing 78.6 wt% PETEDA and 21.4 wt% PVA in the blend has a CO2 permeance of 8.14 × 10−5 cm3 (STP) cm−2 s−1 cmHg−1 and CO2/CH4 selectivity of 52 at 143.5 cmHg feed gas pressure. While feed gas pressure is 991.2 cmHg, CO2 permeance reaches 3.56 × 10−5 cm3 (STP) cm−2 s−1 cmHg−1 and CO2/CH4 selectivity is 19. For the gas mixture, the membrane has a CO2 permeance of 6.94 × 10−5 cm3 (STP) cm−2 s−1 cmHg−1 with a CO2/CH4 selectivity of 33 at 188.5 cmHg feed gas pressure, and a CO2 permeance of 3.29 × 10−5 cm3 (STP) cm−2 s−1 cmHg−1 with a CO2/CH4 selectivity of 7.5 at a higher feed gas pressure of 1164 cmHg. A possible gas transport mechanism in the composite membranes is proposed by investigating the permeating behavior of pure gases and the gas mixture and analyzing possible reactions between CO2/CH4 gases and the PETEDA-PVA blend polymer. The effect of PETEDA content in the blend polymer on permselectivity of the composite membranes was investigated, presenting that CO2 permeance and CO2/CH4 selectivity increase and CH4 permeance decreases, respectively with PETEDA content. This is explained by that with increasing PETEDA content, the carrier content increases, and the crystallinity and free volume of the PETEDA-PVA blend decrease that were confirmed by the experimental results of X-ray diffraction spectra (XRD) and positron annihilation lifetime spectroscopy (PALS).  相似文献   

2.
The hydrogen permeation and stability of tubular palladium alloy (Pd–23%Ag) composite membranes have been investigated at elevated temperatures and pressures. In our analysis we differentiate between dilution of hydrogen by other gas components, hydrogen depletion along the membrane length, concentration polarization adjacent to the membrane surface, and effects due to surface adsorption, on the hydrogen flux. A maximum H2 flux of 1223 mL cm−2 min−1 or 8.4 mol m−2 s−1 was obtained at 400 °C and 26 bar hydrogen feed pressure, corresponding to a permeance of 6.4 × 10−3 mol m−2 s−1 Pa−0.5. A good linear relationship was found between hydrogen flux and pressure as predicted for rate controlling bulk diffusion. In a mixture of 50% H2 + 50% N2 a maximum H2 flux of 230 mL cm−2 min−1 and separation factor of 1400 were achieved at 26 bar. The large reduction in hydrogen flux is mainly caused by the build-up of a hydrogen-depleted concentration polarization layer adjacent to the membrane due to insufficient mass transport in the gas phase. Substituting N2 with CO2 results in further reduction of flux, but not as large as for CO where adsorption prevail as the dominating flow controlling factor. In WGS conditions (57.5% H2, 18.7% CO2, 3.8% CO, 1.2% CH4 and 18.7% steam), a H2 permeance of 1.1 × 10−3 mol m−2 s−1 Pa−0.5 was found at 400 °C and 26 bar feed pressure. Operating the membrane for 500 h under various conditions (WGS and H2 + N2 mixtures) at 26 bars indicated no membrane failure, but a small decrease in flux. A peculiar flux inhibiting effect of long term exposure to high concentration of N2 was observed. The membrane surface was deformed and expanded after operation, mainly following the topography of the macroporous support.  相似文献   

3.
A thin layer (30–40 nm) of a dual-element silica–alumina composition was deposited on a porous alumina support by chemical vapor deposition (CVD) in an inert atmosphere at high temperature. Prior to CVD, an intermediate layer of γ-alumina was coated on the macroporous alumina support. The intermediate layer was prepared by the dip-coating and calcination of boehmite sols of different sizes to give a graded structure that was substantially free of defects. The resulting supported composite membrane had high permeance for hydrogen in the order of 2–3 × 10−7 mol m−2 s−1 Pa−1 at 873 K with selectivities of H2 over CH4, CO and CO2 of 940, 700 and 590, respectively. The membrane operated by a hopping mechanism involving jumps of permeating molecules between solubility sites. The presence of aluminum improved the hydrothermal stability of the membranes for periods in excess of 500 h at 873 K in 16% steam, allowing the permeance to remain above 10−7 mol m−2 s−1 Pa−1, although with decreased selectivities.  相似文献   

4.
We have applied cavity ring-down spectroscopy to a kinetic study of the reaction of NO3 with CH2I2 in 25–100 Torr of N2 diluent at 298 K. The rate constant of reaction of NO3 + CH2I2 is determined to be (4.0 ± 1.2) × 10−13 cm3 molecule−1 s−1 in 100 Torr of N2 diluent at 298 K. The rate constant increases with increasing pressure of buffer gas below 100 Torr. The reaction of CH2I2 with NO3 has the potential importance at nighttime in the atmosphere.  相似文献   

5.
A double layered hydroxy sodalite membrane was synthesised directly onto a tubular -alumina support without seeding using a conventional hot-air oven. The effect of different synthesis parameters including the water content, ageing period, synthesis time and temperature, on the purity and continuity of the membrane was investigated. The water content was an important factor in controlling the presence of contaminating zeolite phases in the membrane. The optimised membrane which was contaminant free was characterised by XRD, SEM and single gas permeation using He, N2 and SF6. The permeance of the three gases through the membrane ranged from 0.8 to 8 × 10−8 mol m−2 s−1 Pa−1. The selectivity ( = 2.5–2.7) compared well to the Knudsen diffusion ratio for He/N2.  相似文献   

6.
A highly hydrogen permeable silica membrane, referred to as Nanosil, was obtained by chemical vapor deposition of a thin SiO2 layer on a porous Vycor glass support. This composite membrane showed good permeance (10−8 mol m−2 s−1 Pa−1) for the small gas molecules (He, Ne, and H2) at 873 K with high selectivity (104) over other larger gas molecules (CO2, CO, and CH4). The characteristics of gas transport on the Vycor and Nanosil membrane were investigated with several gas diffusion models. The experimental gas permeation data on Vycor glass could be explained by the occurrence of Knudsen diffusion in parallel with surface diffusion. The permeance of the small gas molecules (He, Ne, and H2) on the Nanosil membrane was activated, and increased as temperature increased. However, this permeance was limited at high temperature because of the limited permeance on the Vycor support. The gas permeance on the deposited silica layer was obtained by applying a series analysis of gas permeation on the combined silica layer and Vycor support composite system. The order of permeance through the silica layer was He>H2>Ne which was the same as that through vitreous silica glass, but occurred with lower activation energies. The order of permeation of these small gas molecules did not follow either mass or molecular size but could be explained using a statistical gas permeance model.  相似文献   

7.
A silica membrane was produced by chemical vapor deposition using tetraethoxysilane (TEOS), phenyltriethoxysilane (PTES) or diphenyldiethoxysilane (DPDES) as the Si source. Amorphous silica was deposited in the mesopores of a γ-alumina film coated on a porous -alumina tube, by evacuating the reactant through the porous wall. Hydrogen permeance at a permeation temperature of 600°C was of the order of 10−7 mol m−2 s−1 Pa−1, and was not greatly dependent on the Si sources. The silica membrane produced using TEOS contained micropores permeable to both helium and hydrogen, but CO2 and larger molecules were only slightly permeated through those mesopores which were left unplugged. The silica membrane produced from DPDES showed a single-component CO2 permeance equivalent to that of single-component He, and CO2/N2 selectivity was approximately 9 at a permeation temperature of 30°C. When a mixture of CO2 and N2 was fed, however, CO2 permeance decreased to the level of N2 permeance. The H2/N2 selectivity, determined from single-component permeances to H2 and N2, was approximately 100, and these permeances remained unchanged when an equimolar mixture of H2 and N2 was fed. Thus, the DPDES-derived membrane possessed two types of micropores, abundant pores through which helium and hydrogen permeated and a small number of pores in which molecules of CO2 and N2 were permeable but not able to pass one another. Neither meso or macropores remained in the DPDES membrane.  相似文献   

8.
孙成珍  白博峰 《物理化学学报》2018,34(10):1136-1143
二维石墨烯纳米孔中气体分子的选择性渗透对多孔石墨烯分离膜非常重要。本文采用分子动力学方法研究了气体分子在氮氢修饰石墨烯纳米孔中的渗透特性,从分子的大小和结构、纳米孔的构型以及分子与石墨烯之间的作用强度等角度阐明了分子出现选择性渗透的原因。结果表明,不同分子的渗透率不同,即H2O>H2S>CO2>N2>CH4。渗透率跟分子的质量和直径以及分子在石墨烯表面上的吸附密度有关;根据气体分子动理学理论,渗透率跟分子质量成反比关系;而分子在石墨烯表面上的高吸附密度对渗透起促进作用。对于H2O和CH4分子,分子直径起主导作用;H2O分子直径最小,其渗透率最大;同理,CH4分子的渗透率最小。对于H2S和CO2分子,H2S分子的直径较大,但其与石墨烯之间的作用强度较大(吸附密度较高),导致渗透率较高;对于CO2和N2分子,CO2分子的直径较小,并且与石墨烯之间的作用强度较大,渗透率较高。同时发现,分子在纳米孔中的渗透使得其在石墨烯表面的密度分布极不均匀。纳米孔左右两侧的功能化氮原子使CH4分子容易从孔两侧区域穿过,而其它分子由于直径较小在纳米孔中心区域穿过的概率最大。分子与石墨烯之间的作用越强,导致分子在石墨烯表面区域内停留的时间越长,最终使其在渗透纳米孔的过程中所经历的时间越长。本文所采用的氮氢修饰石墨烯纳米孔中,分子渗透速率达到~10-3 mol·s-1·m-2·Pa-1,并且其它分子相对于CH4分子的选择性也很高,说明基于该类型纳米孔的多孔石墨烯分离膜在天然气处理等工业气体分离领域具有很好的应用前景。  相似文献   

9.
氦气在科学和工业等领域中都具有不可替代的作用,其主要存在于天然气中。如何高效地从天然气中分离氦气显得至关重要。本文基于密度泛函理论(DFT)方法系统地探究了菱形石墨炔(rhombic-graphyne,R-GY)分离膜对He和其他天然气组分(Ne、Ar、CO_2、N_2和CH_4)的吸附、选择和渗透性能。结果表明,R-GY作为He分离膜可同时满足高选择性和高渗透率的要求。常温下,R-GY薄膜对He/Ne、He/CO_2、He/N_2、He/Ar和He/CH_4的选择性可分别达到2?10~7、3?10~(20)、9?10~(26)、7?10~(37)和5?10~(51),即使在600 K时仍可保持较高水平。此外,由于较低的扩散能垒,He穿透R-GY薄膜的渗透率在常温下可达到10~(-6) mol·m~(-2)·s~(-1)·Pa~(-1),高出工业标准近3个数量级;而其他气体组分在常温下的渗透率仅为10~(-58)-10~(-14) mol·m~(-2)·s~(-1)·Pa~(-1),气体无法渗透R-GY薄膜。  相似文献   

10.
兼具高通量和高选择性的气体分离膜是研究膜分离材料的目标.采用相转化法制备了聚酰亚胺非对称膜,并将其作为基底膜材料,分别在其表面修饰掺有金属有机框架材料Cu3(BTC)2 (1, 3, 5-均苯三甲酸合铜),沸石咪唑酯骨架材料ZIF-8以及镁铝水滑石MgAl-LDHs的聚酰胺酸溶液,经热亚胺化后制成非对称混合基质膜.研究了该系列非对称混合基质膜的结构特性和对CO2、CH4和N2气体分离性能;考察了ZIF-8的掺杂量对非对称混合基质膜透气性能的影响.结果表明非对称聚酰亚胺膜的表面修饰可有效地改变膜的表面性质,掺杂ZIF-8的非对称混合基质膜气体的透气性能和选择性都增加,且掺杂量为5% (w)时CO2/N2和CO2/CH4的理想选择性分别高达24和83,为合成高效的CO2分离膜提供了借鉴.  相似文献   

11.
We have determined the effect of temperature on intrinsic permeation properties of 6FDA-Durene/1,3-phenylenediamine (mPDA) 50/50 copolyimide dense film and fabricated high performance hollow fiber membranes of the copolyimide for CO2/CH4 separation. The hollow fiber membranes were wet-spun from a tertiary solution containing 6FDA-Durene/mPDA (PI), N-methyl-pyrrolidone (NMP) and tetrahydrofuran (THF) with a weight ratio of 20:50:30 at different shear rates within the spinneret. We observed the following facts: (1) the CO2/CH4 selectivity of the copolyimide dense film decreased significantly with an increase in temperature; (2) the performance of as-spun fibers was obviously influenced by the shear rate during spinning. For uncoated fibers, permeances of CH4 and CO2 decreased with increasing shear rate, while selectivity of CO2/CH4 sharply increased with shear rate until the shear rate reached 2169 s−1 and then the selectivity leveled off; (3) After silicone rubber coating, permeances of CH4 and CO2 decreased, the selectivity of CO2/CH4 was recovered to the inherent selectivity of its dense film. Both the permeances and selectivity with increasing shear rate followed their same trends as that before the coating; (4) there was an optimal shear rate at which a defect-free fiber with a selectivity of CO2/CH4 at 42.9 and permeance of CO2 at 53.3 GPU could be obtained after the coating; and (5) the pressure durability of the resultant hollow fiber membranes could reach 1000 psia at room temperature.  相似文献   

12.
Hydrogen production by steam reforming of methane using catalytic membrane reactors was investigated first by simulation, then by experimentation. The membrane reactor simulation, using an isothermal and plug-flow model with selective permeation from reactant stream to permeate stream, was conducted to evaluate the effect of permselectivity on membrane reactor performance – such as methane conversion and hydrogen yield – at pressures as high as 1000 kPa. The simulation study, with a target for methane conversion of 0.8, showed that hydrogen yield and production rate have approximately the same dependency on operating conditions, such as reaction pressure, if the permeance ratio of hydrogen over nitrogen ((H2/N2)) is larger than 100 and of H2 over H2O is larger than 15. Catalytic membrane reactors, consisting of a microporous Ni-doped SiO2 top layer and a catalytic support, were prepared and applied experimentally for steam reforming of methane at 500 °C. A bimodal catalytic support, which allows large diffusivity and high dispersion of the metal catalyst, was prepared for the enhancement of membrane catalytic activity. Catalytic membranes having H2 permeances in the range of 2–5 × 10−6 m3 m−2 s−1 kPa−1, with H2/N2 of 25–500 and H2/H2O of 6–15, were examined for steam reforming of methane. Increased performance for the production of hydrogen was experimentally obtained with an increase in reaction-side pressure (as high as 500 kPa), which agreed with the theoretical simulation with no fitting parameters.  相似文献   

13.
Organic–inorganic hybrids based on poly(vinyl alcohol) (PVA)/SiO2 hybrid membranes containing sulfonic acid groups were prepared using the sol–gel process under acidic conditions. The PVA/sulfosuccinic acid (SSA)/silica hybrid membranes were fabricated from different SSA contents. The proton conductivity and methanol permeability of the hybrid membranes were studied with changing SSA content from 5 to 25 wt.%. It was found that the proton conductivity and the methanol permeability were dependent on the SSA content both as a crosslinking agent, and as a donor of the hydrophilic SO3H group. Up to an SSA content of about 20 wt.%, both of these properties decrease, and above this SSA content, they begin to increase with increasing SSA content. The proton conductivities of the PVA/SSA/silica membranes were in the range of 10−3 to 10−2 S/cm, and the methanol permeabilities ranged between 10−8 and 10−7 cm2/s. The presence of silica particles in the organic polymer matrix, which reduce the free water ratio of the membranes, results in hybrids with markedly reduced methanol permeabilities. These characteristics of the PVA/SSA/silica hybrid membranes are desirable for future applications related to direct methanol fuel cells.  相似文献   

14.
We have developed almost defect-free Matrimid/polyethersulfone (PES) dual-layer hollow fibers with an ultra-thin outer layer of about 10 × 10−6 m (10 μm), studied the effects of spinneret and coagulant temperatures and dope flow rates on membrane morphology and separation performance, and highlighted the process similarities and differences between single-layer and dual-layer hollow fiber fabrications. The compositions of the outer and inner layer dopes were 26.2/58.8/15.0 (in wt.%) Matrimid/NMP/methanol and 36/51.2/12.8 (in wt.%) PES/NMP/ethanol, respectively. It is found that 25 °C for both spinneret and coagulant is a better condition, and the fibers thus spun exhibit an O2/N2 selectivity of 6.26 which is within the 87% of the intrinsic value and a calculated apparent dense-layer thickness of about 2886 × 10−10 m (2886 Å). These dual-layer membranes also have impressive CO2/CH4 selectivity of around 40 in mixed gas tests. The scanning electron microscopy (SEM) studies show that low coagulant temperatures produce dual-layer hollow fibers with an overall thicker thickness and tighter interfacial structure which may result in a higher substructure resistance and decrease the permeance and selectivity simultaneously. The elemental analysis of the interface skins confirms that a faster inter-layer diffusion occurs when the fibers are spun at higher spinneret temperatures. Experimental results also reveal that the separation performance of dual-layer hollow fiber membranes is extremely sensitive to the outer layer dope flow rate, and the inner layer dope flow rate also has some influence. SEM pictures indicate that the macrovoid formation in dual-layer asymmetric hollow fiber membranes is quite similar to that in single-layer ones. It appears that macrovoids observed in this study likely start from local stress imbalance and weak points.  相似文献   

15.
Two-dimensional (2D) materials, led by graphene, have emerged as nano-building blocks to develop high-performance membranes. The atom-level thickness of nanosheets makes a membrane as thin as possible, thereby minimizing the transport resistance and maximizing the permeation flux. Meanwhile, the sieving channels can be precisely manipulated within sub-nanometer size for molecular separation, such as gas separation. For instance, graphene oxide (GO) channels with an interlayer height of about 0.4 nm assembled by external forces exhibited excellent H2/CO2 sieving performance compared to commercial membranes. Cross-linking was also employed to fabricate ultrathin (< 20 nm) GO-facilitated transport membranes for efficient CO2 capture. A borate-crosslinked membrane exhibited a high CO2 permeance of 650 GPU (gas permeation unit), and a CO2/CH4 selectivity of 75, which is currently the best performance reported for GO-based composite membranes. The CO2-facilitated transport membrane with piperazine as the carrier also exhibited excellent separation performance under simulated flue gas conditions with CO2 permeance of 1020 GPU and CO2/N2 selectivity as high as 680. In addition, metal-organic frameworks (MOFs) with layered structures, if successfully exfoliated, can serve as diverse sources for MOF nanosheets that can be fabricated into high-performance membranes. It is challenging to maintain the structural and morphological integrity of nanosheets. Poly[Zn2(benzimidazole)4] (Zn2(bim)4) was firstly exfoliated into 1-nm-thick nanosheets and assembled into ultrathin membranes possessing both high permeance and excellent molecular sieving properties for H2/CO2 separation. Interestingly, reversed thermo-switchable molecular sieving was also demonstrated in membranes composed of 2D MOF nanosheets. Besides, researchers employed layered double hydroxides (LDHs) to prepare molecular-sieving membranes via in situ growth, and the as-prepared membranes showed a remarkable selectivity of ~80 for H2-CH4 mixture. They concluded that the amount of CO2 in the precursor solution contributed to LDH membranes with various preferred orientations and thicknesses. Apart from these 2D materials, MXenes also show great potential in selective gas permeation. Lamellar stacked MXene membranes with aligned and regular sub-nanometer channels exhibited excellent gas separation performance. Moreover, our ultrathin (20 nm) MXene nanofilms showed outstanding molecular sieving property for the preferential transport of H2, with H2 permeance as high as 1584 GPU and H2/CO2 selectivity of 27. The originally H2-selective MXene membranes could be transformed into membranes selectively permeating CO2 by chemical tuning of the MXene nanochannels. This paper briefly reviews the latest groundbreaking studies in 2D-material membranes for gas separation, with a focus on sub-nanometer 2D channels, exfoliation of 2D nanosheets with structural integrity, and tunable gas transport property. Challenges, in terms of the mass production of 2D nanosheets, scale-up of lab-level membranes and a thorough understanding of the transport mechanism, and the potential of 2D-material membranes for wide implementation are briefly discussed.  相似文献   

16.
制备了高性能的AlPO4-14分子筛膜. 首先通过控制反应溶胶中水和模板剂的含量制备了形貌均一的AlPO4-14分子筛, 分子筛的尺寸为15~18 mm; 然后采用晶种法即在反应凝胶中加入分子筛作为晶种进一步调控分子筛的大小, 使得AlPO4-14分子筛的尺寸从15~18 mm减小到2~3 mm, 得到形貌均一的纯相片状晶体, 同时有效缩短了制备时间; 最后以多孔管状莫来石为支撑体, 采用二次生长法制备AlPO4-14分子筛膜. 考察了2种不同大小的晶种对膜形貌和性能的影响, 发现以大尺寸的分子筛(15~18 mm)作为晶种制备的分子筛膜的分离层存在较多缺陷, 而采用小尺寸的晶种(2~3 mm)制备的膜层较均一致密. AlPO4-14分子筛膜经高温脱除模板剂后仍然保持着纯相的AlPO4-14晶型, 表明二次生长法促进了AlPO4-14晶体在膜层中的生长且使其具有更高的结晶度和热稳定性. 在25 ℃, 100 kPa下, AlPO4-14分子筛膜对H2/CH4, CO2/CH4和H2/CF4的理想分离因子分别为28, 40和1047, 且H2和CO2的渗透速率分别为6.3×10 -7和9×10 -7 mol·(m 2·s·Pa) -1; 对等摩尔CO2/CH4混合气体的分离因子为81.5, 且CO2的渗透速率为8.8×10 -7 mol·(m 2·s·Pa) -1.  相似文献   

17.
Gas permeation properties of crosslinked membranes prepared from a series of poly(ethylene oxide-co-epichlorohydrin) (P(EO/EP)) copolymers with different contents of ethylene oxide are determined by using the constant-volume and pressure-increase method. In addition to the chemical composition, the transport properties are related to the main characteristics of copolymers like the glass transition temperature, crystallinity and crosslinking ratio. Permeation measurements of He, H2, N2, O2, CO2 and CH4 show that the permeabilities are nearly constant up to an EO content of about 75–80 mol%, then increase rapidly up to a maximum around 90 mol% of EO in the copolymers. The same behavior is observed for the diffusion coefficient and the CO2 sorption coefficient. The presence of an optimal EO composition is explained by the competition between crystalline and amorphous EO sequences. The copolymers present very high CO2 permeability and selectivity respect to other permanent gases even in gas mixtures and under high pressures.  相似文献   

18.
Polyurethane (PU) and polyurethane–poly(methylmethacrylate) (PMMA) blend membranes were used in gas separation studies. The effects of blend composition, temperature, and pressure on the permeability, diffusivity, and solubility of CO2, H2, O2, CH4, and N2 were investigated. The separation factors of some gas pairs were also evaluated. Positron annihilation lifetime spectroscopy was applied to assess free volume changes as a function of blend composition and temperature. Free volume size increases by approximately 30% with increasing temperature from 10 to 40 °C for all blends studied. The permeability of all gases decreases by approximately 55% with the addition of 30 wt% of PMMA. The permeation process is governed by diffusion, except that of CO2. In relation to the behavior of gas transport as a function of temperature, some important observations are (i) CO2 presents the lowest permeation activation energy value (28 kJ/mol), and (ii) gas pair selectivity increases at low temperatures and is high for gas pairs that present differences in permeation activation energies as high as 15 kJ/mol for the CO2/CH4 gas pair. Furthermore, the study with pressure variations shows that: (i) at elevated pressure, the PU and the blend membrane permeability to CO2 and H2 increases by approximately 35%, and (ii) oxygen-to-nitrogen selectivity increases with pressure as a consequence of the decrease in the permeability to nitrogen in the case of the 30%-PMMA blend.  相似文献   

19.
Supported carbon molecular sieve membranes based on a phenolic resin   总被引:7,自引:0,他引:7  
The preparation of a composite carbon membrane for separation of gas mixtures is described. The membrane is formed by a thin microporous carbon layer (thickness, 2 μm) obtained by pyrolysis of a phenolic resin film supported over a macroporous carbon substrate (pore size, 1 μm; porosity, 30%). The microporous carbon layer exhibits molecular sieving properties and it allows the separation of gases depending on their molecular size. The micropore size was estimated to be around 4.2 Å. Single and mixed gas permeation experiments were performed at different temperatures between 25°C and 150°C, and pressures between 1 and 3.5 bar. The carbon membrane shows high selectivities for the separation of permanent gases like O2/N2 system (selectivity≈10 at 25°C). Gas mixtures like CO2/N2 and CO2/CH4 are successfully separated by means of prepared membranes. For example, the membrane prepared by carbonization at 700°C shows at 25°C the following separation factors: CO2/N2≈45 and CO2/CH4≈160.  相似文献   

20.
A series of copolymers containing ether oxygen groups and amino groups were prepared based on N,N-dimethylaminoethyl methacrylate (DMEMA) and polyethylene glycol methyl ether methyl acrylate (PEGMEMA). The effect of PEGMEMA content in the copolymer on density, free volume, mechanical performance, and H2, CO2, N2 and CH4 gas transport properties of the copolymer was determined. Free volume was characterized using the polymer density and group contribution theory. The permeability of the copolymer to CO2 is high, and both the CO2/N2 and CO2/H2 selectivities are high. For example, the permeability coefficient of PDMAEMA–PEGMEMA-90 (“90” represents the weight percent of PEGMEMA) to CO2 is 112 Barrer and the CO2/N2 and CO2/H2 selectivity coefficients are 31 and 7, respectively. The effect of the temperature on gas transport properties was also determined. Finally, the potential application of the copolymer membranes for CO2/light gases separation was explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号