首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photodynamic therapy (PDT) is a novel cancer therapy inducing irreversible photodamage to tumor tissue via photosensitizer-mediated oxidative cytotoxicity. The cellular and molecular responses associated with PDT are only partially understood. We have reported previously the generation of several photosensitizer-specific PDT-resistant cell variants of HT29 human colon adenocarcinoma cells by selecting cells from sequential PDT treatment using different photosensitizers. In this report, we describe the use of messenger RNA (mRNA) differential display to identify genes that were differentially expressed in the parental HT29 cells compared with their resistant variants. In comparison with parental HT29 cells, mRNA expression was increased in the PDT-resistant cell variants for BNIP3, estrogen receptor-binding fragment-associated gene 9, Myh-1c, cytoplasmic dynein light chain 1, small membrane protein I and differential dependent protein. In contrast, expression in the PDT-resistant variants was downregulated for NNX3, human HepG2 3' region Mbol complementary DNA, glutamate dehydrogenase, hepatoma-derived growth factor and the mitochondrial genes coding for 16S ribosomal RNA (rRNA) and nicotinamide adenine dinucleotide (NADH) dehydrogenase subunit 4. The reduction for mitochondrial 16S rRNA in the PDT-resistant variants was confirmed by Northern blotting, and the elevated expression of the proapoptotic BNIP3 in the PDT-resistant variants was confirmed by Northern and Western blotting analysis. We also examined the expression of some additional apoptosis-regulating genes using Western blotting. We show an increased expression of Bcl-2 and heat shock protein 27 and a downregulation of Bax in the PDT-resistant variants. In addition, the mutant p53 levels in the parental HT29 cells were reduced substantially in the PDT-resistant variants. We suggest that the altered expression in several mitochondrial and apoptosis-regulating genes contributes to PDT resistance.  相似文献   

2.
The Photofrin-resistant cell line (HT29-P14) was used in the present study to investigate the mechanism(s) involved in Photofrin-mediated photodynamic therapy (PDT). We compared gene expression profiles between the resistant cell line and its parental cell line (HT29) using DNA microarray analysis. A significant up-regulation of small heat shock protein 27 (Hsp27) was found in HT29-P14 cells. The elevated Hsp27 level may play an important role in the resistance of HT29-P14 to Photofrin-PDT. To test this hypothesis, we stably transfected HT29 cells with human Hsp27 complementary DNA. The potential role of Hsp27 in the resistance to PDT was examined in Hsp27-overexpressing cells. Stable trasnfected cells (H13) showed an increased survival after Photofrin-PDT, suggesting that the up-regulation of Hsp27 is related to the induced resistance to Photofrin-PDT. Phosphorylation of Hsp27 has been suggested to play an important role in cytoprotection. We have examined the phosphorylation activity of Hsp27 among the parental and resistant cells, as well as the overexpression cells. An elevated level of Hsp27 resulted in an increased ability of phosphorylation in both resistant and overexpressing cells after PDT. The activation of the phosphorylation of Hsp27 induced by PDT was not mediated by the p38 mitogen-activated protein kinase. These data suggest that Hsp27 may play an important role in mediating the adaptive response to Photofrin-PDT-induced oxidative stress and that the pathways leading to Hsp27 phosphorylation may contribute to the resistance of the cells to photooxidative damage.  相似文献   

3.
Increased Photosensitivity in HL60 Cells Expressing Wild-Type p53   总被引:4,自引:0,他引:4  
Loss of p53 function has been correlated with decreased sensitivity to chemotherapy and radiation therapy in a variety of human tumors. Comparable analysis of p53 status with sensitivity to oxidative stress induced by pho-todynamic therapy has not been reported. In the current study we examined photosensitivity in human promye-locytic leukemia HL60 cells exhibiting either wild-type p53, mutated p53 or deleted p53 expression. Experiments were performed using a purpurin, tin ethyl etiopurpurin (SnET2)-, or a porphyrin, Photofrin (PH)-based photo-sensitizer. Total SnET2 accumulation was comparable in all three cell lines. Uptake of PH was highest in cells expressing wild-type p53 but incubation conditions could be adjusted to achieve equivalent cellular PH levels during experiments that analyzed photosensitivity. Survival measurements demonstrated that HL60 cells expressing wild-type p53 were more sensitive to PH- and SnET2-mediated photosensitization, as well as to UVC irradiation, when compared to HL60 cells exhibiting deleted or mutated p53 phenotypes. A rapid apoptotic response was observed following purpurin- and porphyrin-induced photosensitization in all cell lines. Results of this study indicate that photosensitivity is increased in HL60 cells expressing wild-type p53 and that photosensitizer-medi-ated oxidative stress can induce apoptosis through a p53-independent mechanism in HL60 cells .  相似文献   

4.
This study was designed to investigate the efficacy of photodynamic therapy (PDT) in treating colonic cancer in a preclinical study. Photofrin, a porphyrin mixture, and pheophorbide a (Ph a), a bacteriochlorin, were tested on HT29 human colonic tumor cells in culture and xenografted into athymic mice. Their pharmacokinetics were investigated in vitro, and the PDT efficacy at increasing concentrations was determined with proliferative, cytotoxic and apoptotic assessments. The in vivo distribution and pharmacokinetics of these dyes (30 mg/kg, intraperitoneal) were investigated on HT29 tumor-bearing nude mice. The inhibition of tumor growth after a single 100 J/cm2 PDT session was measured by the changes in tumor volume and by histological analysis of tumor necrosis. PDT inhibited HT29 cell growth in culture. The cell photodamage occurred since the time the concentrations of Ph a and Photofrin reached 5.10(-7) M (or 0.3 microg/mL) and 10 microg/mL, respectively. A photosensitizer dose-dependent DNA fragmentation was observed linked to a cleavage of poly(ADP-ribose) polymerase and associated with an increased expression of mutant-type p53 protein. PDT induced a 3-week delay in tumor growth in vivo. The tumor injury was corroborated by histological observation of necrosis 48 h after treatment, with a correlated loss of specific enzyme expression in most of the tumor cells. In conclusion, PDT has the ability to destroy human colonic tumor cells in vitro and in vivo. This tumoricidal effect is likely associated with a p53-independent apoptosis, as HT29 cells express only mutated p53. The current study suggests a preferential use of Photofrin in PDT of colonic cancer because it should be more effective in vivo than Ph a as a consequence of better tumor uptake.  相似文献   

5.
Our approach to examine the mechanism(s) of action for photodynamic therapy (PDT) has been via the generation of PDT-resistant cell lines. In this study we used three human cell lines, namely, human colon adenocarcinoma (HT29), human bladder carcinoma and human neuroblastoma. The three photosensitizers used were Photofrin, Nile Blue A and aluminum phthalocyanine tetrasulfonate. The protocol for inducing resistance consisted of repeated in vitro photodynamic treatments with a photosensitizer to the 1-10%-survival level followed by regrowth of single surviving colonies. Varying degrees of resistance were observed. The three induced variants of the HT29 cell line were the most extensively studied. Their ratios of increased survival at the LD90 level range between 1.5- and 2.62-fold more resistant.  相似文献   

6.
7.
UVA can penetrate dermis and cause functional damage of dermal fibroblasts leading photoaging. Ginseng is a widely used traditional Chinese medicine for skin aging. However, its effects on skin photoaging induced by UVA are not clear. In this study, we isolated ginseng proteins (GP), with molecular weights of 27 kDa and 13 kDa, and found that they alleviated the inhibitory effects of UVA on cell viability and increased percentage of NIH-3T3 fibroblasts in the S phase of cells cycle. GP also improved cell contraction ability, increased the expression and secretion of CoL-I, similar to MAPK phosphorylation inhibitors and reduced expression and secretion of MMP-1, MMP-2 and MMP-9 as well as the enzyme activities of MMP-2 and MMP-9. They reduced ROS content, DNA damage and 8-OHdG content, as well as the protein expression of p53, p21 and p16. The levels of p-ERK, p-p38 and p-JNK, p-c-Fos and p-c-Jun proteins were decreased by GP. Inactivated GP did not inhibit the cellular activity and expression and secretion of CoL-I irradiated by UVA. The results showed that GP can improve cell viability and contractile function by inhibiting DNA damage and collagen degradation to inhibit the photoaging effects of skin dermal cells caused by UVA.  相似文献   

8.
The potential to induce non-nuclear changes in mammalian cells has been examined for (1) UVA1 radiation (340–400 nm, UVASUN 2000 lamp), (2) UVA + UVB (peak at 313 nm) radiation (FS20 lamp), and (3) UVC (254 nm) radiation (GI5T8 lamp). The effects of irradiation were monitored in vitro using three strains of L5178Y (LY) mouse lymphoma cells that markedly differ in sensitivity to UV radiation. Comparisons were made for the effects of approximately equitoxic fluences that reduced cell survival to 1–15%. Depending on the cell strain, the fluences ranged from 830 to 1600 kJ/m2 for the UVASUN lamp, 75 to 390 J/m2 for the FS20 lamp and 3.8 to 17.2 J/m2 for the G15T8 lamp. At the exposure level used in this study, irradiation with the UVASUN, but not the FS20 or G15T8, lamp induced a variety of non-nuclear changes including damage to cytoplasmic organelles and increased plasma membrane permeability and cell lysis. Cell lysis and membrane permeabilization were induced by the UVA1 emission of the UVASUN lamp, but not by its visible + IR components (>400 nm). The results show that the plasma membrane and other organelles of LY cells are highly sensitive to UVA1 but not to UVB or UVC radiation. Also UVA1, but not UVB or UVC radiation, causes rapid and extensive lysis of LY cells. In conclusion, non-nuclear damage contributes substantially to UVA cytotoxicity in all three strains of LY cells.  相似文献   

9.
Induction of apoptosis is a function of external stimuli and cellular gene expression. Many cells respond to DNA damage by the induction of apoptosis, which depends on a functional p53 protein and is signaled by elevation of p53 levels. In this study, we found that a prior exposure to mild stress (42 degrees C) can protect HepG2 (p53+/+) cells from a subsequent UVC-induced apoptosis determined by DNA fragmentation and ratio of sub-G1 peak, but no heat-enhanced protection was found in Hep3B (p53-/-) cells. Although a similar inductive pattern of HSP70 protein and mRNA was detected in the two cell lines under thermal stress, the effect of thermal stress on UVC-induced apoptosis in HepG2 and Hep3B cells was obviously different. Overexpression of HSP70 by transient transfection of HSP70 expression vector in HepG2 cells significantly inhibited UVC-induced cell death; however, this inhibitory effect did not occur in transfected-Hep3B cells. Treatment of HepG2 cells with p53-specific antisense oligonucleotide could effectively block the antiapoptotic effect of thermal stress on UVC-induced apoptosis and increase of intracellular wild-type p53 protein by transfecting wtp53 expression plasmid into Hep3B cells yielded more resistance to UVC irradiation after prior thermal stress exposure. The results reveal an involvement of p53 in the antiapoptotic effect of thermal stress on UVC irradiation. Finally, a p53 protein increase was detected in UVC-treated HepG2 cells and could be coimmunoprecipitated with HSP70 after a thermal stress treatment. Prolonged p53 binding activity and enhanced expression of p53-controlled genes such as G1 arrest and DNA damage 45 and wild-type p53 activation factor 1/Cdk-interacting protein 1 by thermal stress are also observed in UVC-irradiated HepG2 cells. Based on these results, we propose that the antiapoptotic effect of thermal stress is mediated by increasing HSP70 and modulating intracellular p53 function.  相似文献   

10.
Abstract— The mutagenicity of photodynamic therapy (PDT) using red light and either Photofrin® (porfimer sodium) (PF) or aluminum phthalocyanine (AIPc) as the photosensitizer was determined at the thymidine kinase (TK) locus in the human lymphoblastic cell lines, TK6 and WTK1, and was compared to the mutagenicity of UVC and X-radia-tion in these cells as well as the mutagenicity of PDT in murine L5178Y lymphoblastic cell lines. Photodynamic therapy was found not to be mutagenic in TK6 cells, which possess an active p53 gene and which are relatively deficient in recombination and repair of DNA double-strand breaks. In contrast, PDT with either sensitizer was significantly mutagenic in WTK1 cells, which harbor an inactivating mutation in the p53 gene and are relatively efficient in recombination and double-strand break repair as compared to TK6 cells. The induced mutant frequency in WTK1 cells with PF as the photosensitizer was similar to that induced by UVC radiation but lower than that induced by X-radiation at equitoxic faiences/ doses. The mutant frequency induced by PDT in WTK1 cells with either photosensitizer was much lower than that induced in murine lymphoblasts at equitoxic fluences. The TK6 and WTK1 cells did not differ in their sensitivity to the cytotoxic effects of PDT, but the level of PDT-induced apoptosis was greater in TK6 than in WTK1 cells. These results indicate that the mutagenicity of PDT varies in different types of cells and may be related to the repair capabilities as well as the p53 status of the cells.  相似文献   

11.
In this study, the aged dermal fibroblast model was constructed by repeated irradiation with UV light and the effect of lupeol, a triterpenoid, on anti‐aging was confirmed. SA‐β‐galactosidase (SA‐β‐gal) stained aged cells increased by about 40% and expression of p‐p53, p21, p16 and MMPs (MMP‐1, ‐2, ‐3) increased in aged fibroblast. As an efficacy result, the treatment of lupeol on aged fibroblast induced by UVA repeated irradiation showed a dose‐dependent reduction of SA‐β‐gal stained aged cells, the expression of p‐p53, p21, p16 and inhibition of MMPs. Interestingly, lupeol increased dephosphorylation of p‐ERK in repeated UV irradiated conditions. Additionally, lupeol compensated MMPs expression when p‐ERK phosphorylation was inhibited by p‐ERK inhibitor PD98059. Thus, these results showed that lupeol has a possible effect on MMPs expression using inhibition of the p‐ERK pathway. Taken together, we confirmed that lupeol inhibits senescence through inhibiting MMP‐1, ‐2, ‐3 as well as p‐p53, p21 and p16 expression and SA‐β‐gal activity in repeated UVA‐irradiated senescent FB models, therefore suggesting that lupeol may be useful as an anti‐aging agent.  相似文献   

12.
Ultraviolet radiation within three different wavelength ranges, UVA (340-400 nm), UVB (290-320 nm) or UVC (200-290 nm), was shown to induce apoptosis in OCP13 cells, derived from the medaka fish. Morphological changes such as cell shrinkage and a decrease in the number of nucleoli appeared 4 h after UVA, UVB or UVC irradiation, although with different relative efficiencies. Doses required to induce apoptosis with similar efficiencies were about 2500-fold higher for UVA and 10-fold higher for UVB than for UVC. The following phenomena occurred after UVA irradiation but not after UVB or UVC irradiation. (1) Ultraviolet-A-induced cell detachment occurred with or without cycloheximide pretreatment. (2) Cells attached to plastic showed morphological changes such as rounding up of nuclei without a change in the cell distribution. (3) Morphological changes after UVA irradiation could not be evaded by photorepair treatment. (4) Morphological changes did not occur in cells attached to glass coverslips but only those in plastic dishes. (5) Apoptosis occurred without detectable increase of caspase-3-like activity. (6) Morphological changes were inhibited by N-acetylcysteine, a scavenger of active oxygen species. These results suggest the existence of two different pathways leading to apoptosis, one for long- (UVA) and the other for short- (UVB or UVC) wavelength radiation.  相似文献   

13.
We have examined the role of the nucleus and the membrane in the activation of nuclear factor (NF)-KB by oxidant stress generated via the UVA (320–380nm) component of solar radiation. Nuclear extracts from human skin fibroblasts that had been irradiated with UVA at doses that caused little DNA damage contained activated NF-KB that bound to its recognition sequence in DNA. The UVA radiation-dependent activation of NF-KB in enucleated cells confirmed that the nucleus was not involved. On the other hand, UVA radiation-dependent activation of NF-KB appeared to be correlated with membrane damage, and activation could be prevented by a-tocopherol and butylated hydroxytol-uene, agents that inhibited UVA radiation-dependent peroxidation of cell membrane lipids. The activation of NF-KB by the DNA damaging agents UVC (200–290nm) and UVB (290–320nm) radiation also only occurred at doses where significant membrane damage was induced, and, overall, activation was not correlated with the relative levels of DNA damage induced by UVC/UVB and UVA radiations. We conclude that the oxidative modification of membrane components may be an important factor to consider in the UV radiation-dependent activation of NF-KB over all wavelength ranges examined.  相似文献   

14.
Abstract— Peripheral blood mononuclear cells were irradiated with UVA, UVB or UVC. The highest exposure dose used in each waveband reduced the number of viable cells to one-third the control cell population after 3 days in culture. Exposure of these cells to half as much UV from each waveband resulted in an equivalent or greater degree of inhibition of their proliferative response to mitogen as measured by lymphoblast transformation, [3H]-thymidine uptake and viable cell number on day 3 in culture. The pattern of inhibition was distinct for each waveband. UVA interfered with blastogenesis on the first 2 days of culture at doses which had considerably less effect on viable cell number. UVA also depressed the first round of DNA synthesis, which was detectable on the second day of culture. By day 3 in culture, however, the UVA-induced reduction in both the number of lymphoblasts and the uptake of [3H]-thymidine was a direct reflection of reduced numbers of viable cells. UVB did not interfere with blastogenesis in mitogen-stimulated cultures to the same degree as did UVA. Only the highest dose of UVB depressed blast transformation more than viable cell number on day 1; by day 2 lower doses were also inhibitory. In contrast UVC had little effect on blastogenesis at any time; a reduced number of lymphoblasts observed on days 2 and 3 in culture was a direct reflection of a reduced number of viable cells rather than a reduced percent of these cells undergoing blast transformation. As with UVA-irradiated, mitogen-stimulated cells, [3H]-thymidine uptake was also depressed in both UVB and UVC irradiated, mitogen-stimulated cells on day 2. However, only UVB continued to depress DNA synthesis more than viable cell number after 3 days of culture. These results suggest that UVA, UVB and UVC may interfere with any one or more of the signals involved in the response to mitogen, be they the recognition of mitogen by T cells or accessory cells, the transformation of lymphocytes into lymphoblasts or the activation of lymphoblasts to synthesize DNA.  相似文献   

15.
Abstract— Ultraviolet A (UVA,315–400 nm) radiation is known to be a complete carcinogen, but in contrast to UVB (280-315 nm) radiation, much of the cell damage is oxygen dependent (mediated through reactive oxygen species), and the dominant premutational DNA lesion(s) remains to be identified. To investigate further the basic differences in UVA and UVB carcinogenesis, we compared in vivo cellular responses, viz. cell cycle progression and transient p53 expression in the epidermis, after UVA1 (340-400 nm) exposure with those after broadband UVB exposure of hairless mice. Using flow cytometry we found a temporary suppression of bromodeoxyuridine (BrdU) uptake in S-phase cells both after UVB and UVA1 irradiation, which only in the case of UVB is followed by an increase to well over control levels. With equally erythemogenic doses (1-2 MED), the modulation of BrdU uptake was more profound after UVB than after UVA1 irradiation. Also, a marked transient increase in the percentage of S-phase cells occurred both after UVB and after UVA1 irradiation, but this increase evolved more rapidly after UVA1 irradiation. Further, p53 expression increased both after UVB and UVA1 irradiations, with peak expression already occurring from 12 to 24 h after UVA1 exposure and around 24 h after UVB exposure. Overall, UVA1 radiation appears to have less of an impact on the cell cycle than UVB radiation, as measured by the magnitude and duration of changes in DNA synthesis and cells in S phase. These differences are likely to reflect basic differences between UVB and UVA1 in genotoxicity and carcinogenic action.  相似文献   

16.
Cells receive signals for survival as well as for death, and the balance between the two ultimately determines the fate of the cells. UV-triggered apoptotic signaling has been well documented, whereas UV-induced survival effects have received little attention. We have reported previously that UVB irradiation prevented apoptosis, which is partly dependent on activation of the phosphatidylinositol 3-kinase (PI3-kinase)-Akt pathway (Ibuki Y. and Goto, R. [2000] Biochem. Biophys. Res. Commun. 279, 872-878). In this study, antiapoptotic effects and survival signals of UV with different wavelength ranges, UVA, UVB and UVC, were examined. NIH3T3 cells showed apoptotic cell death by detachment from the extracellular matrix under serum-free conditions, which was prevented by all wavelengths. However, the effect of UVA was less than those of UVB and UVC, as determined by metabolism of fluoresceine diacetate and the appearance of chromatin-condensed cells. Furthermore, the effects of three wavelengths of UV on the apoptotic pathway upstream of the nuclear signals were examined. Reduction of mitochondrial transmembrane potential (delta psi) and activation of caspase-9 and -3 were suppressed by all three wavelengths of UV, showing wavelength-dependent effects as mentioned previously. Shorter wavelengths showed stronger inhibitory effects on caspase-8 activity. The P13-kinase inhibitor wortmannin partially inhibited the UVB- and UVC-induced suppression of apoptosis but not the inhibitory effect of UVA. Furthermore, normal delta psi maintained by UVA was not changed in the presence of wortmannin, but those by UVB and UVC were reduced. Akt was clearly phosphorylated by all three wavelengths. The phosphorylation by UVB and UVC was completely inhibited by addition of wortmannin, but that by UVA was not, in agreement with the results of survival and of delta psi. These results suggested the existence of two different survival pathways leading to suppression of apoptosis, one for UVA that is independent of the PI3-kinase-Akt pathway and the other for UVB and UVC that is dependent on this pathway.  相似文献   

17.
Abstract: Effects of different radiation treatments on the human immunodeficiency virus-1 (HIV) promoter were reassessed for exposures comparable to those encountered in clinical or cosmetic practice, using survival of the host cell as a basis for comparisons. The exposures were performed with two ultraviolet radiation sources commonly used as medical or cosmetic devices (UVASUN 2000 and FS20 lamps), a germicidal (G15T8) lamp and an X-ray machine. The UVC component of the FS20 lamp was filtered out. The emission spectra of the lamps were determined. The characteristics of these sources allowed us to discriminate among effects of UVA1 (340–400 nm), UVB + UVA2 (280–340 nm) and UVC (254 nm) radiations. Effects of irradiation were ascertained using cultures of HeLa cells stably transfected with the HIV promoter linked to a reporter—chloramphenicol acetyl transferase—gene. The exposures used caused at least two logs of cell killing. In this cytotoxicity range, UVA1 or X radiations had no effect on the HIV promoter, whereas UVB + UVA2 or UVC radiations activated the HIV promoter in a fluence-dependent manner. Survivals following exposure to UVB + UVA2 or UVC radiation were (1) at the lowest measurable HIV promoter activation, 30 and 20%, respectively, (2) at one-half maximal activation, 6 and 3%, respectively and (3) at the maximal activation, 0.5 and 0.2%, respectively. The results suggest that, among the radiations studied, UVB is the most important modality from the viewpoint of its potential effects on HIV-infected individuals, since (1) UVA1 or X radiations have no effects on the HIV promoter, (2) human exposure to UVC radiation is infrequent and (3) human UVB exposure is very common.  相似文献   

18.
Although there is evidence that the p53 tumor suppressor plays a role in the response of some human cells to chemotherapy and radiation therapy, its role in the response of human cells to photodynamic therapy (PDT) is less clear. In order to examine the role of p53 in cellular sensitivity to PDT, we have examined the clonogenic survival of normal human fibroblasts that express wild-type p53 and immortalized Li-Fraumeni syndrome (LFS) cells that express only mutant p53, following Photofrin-mediated PDT. The LFS cells were found to be more resistant to PDT compared to normal human fibroblasts. The D37 (LFS cells)/D37 (normal human fibroblasts) was 2.8 +/- 0.3 for seven independent experiments. Although the uptake of Photofrin per cell was 1.6 +/- 0.1-fold greater in normal human fibroblast cells compared to that in LFS cells over the range of Photofrin concentrations employed, PDT treatment at equivalent cellular Photofrin levels also demonstrated an increased resistance for LFS cells compared to normal human fibroblasts. Furthermore, adenovirus-mediated transfer and expression of wild-type p53 in LFS cells resulted in an increased sensitivity to PDT but no change in the uptake of Photofrin per cell. These results suggest a role for p53 in the response of human cells to PDT. Although normal human fibroblasts displayed increased levels of p53 following PDT, we did not detect apoptosis or any marked alteration in the cell cycle of GM38 cells, despite a marked loss of cell viability. In contrast, LFS cells exhibited a prolonged accumulation of cells in G2 phase and underwent apoptosis following PDT at equivalent Photofrin levels. The number of apoptotic LFS cells increased with time after PDT and correlated with the loss of cell viability. A p53-independent induction of apoptosis appears to be an important mechanism contributing to loss of clonogenic survival after PDT in LFS cells, whereas the induction of apoptosis does not appear to be an important mechanism leading to loss of cell survival in the more sensitive normal human fibroblasts following PDT at equivalent cellular Photofrin levels.  相似文献   

19.
It is clear that solar UV irradiation is a crucial environmental factor resulting in skin diseases partially through activation of cell signaling toward altered gene expression and reprogrammed protein translation. Such a key translational control mechanism is executed by the eukaryotic initiation factor 2α subunit (eIF2α) and the downstream events provoked by phosphorylation of eIF2α at Ser(51) are clearly understood, but the upstream signaling mechanisms on the eIF2α-Ser(51) phosphorylation responses to different types of UV irradiations, namely UVA, UVB and UVC, are still not well elucidated. Herein, our evidence reveals that UVA, UVB and UVC all induce a dose- and time-dependent phosphorylation of eIF2α-Ser(51) through distinct signaling mechanisms. UVA-induced eIF2α phosphorylation occurs through MAPKs, including ERKs, JNKs and p38 kinase, and phosphatidylinositol (PI)-3 kinase. By contrast, UVB-induced eIF2α phosphorylation is through JNKs and p38 kinase, but not ERKs or PI-3 kinase, whereas UVC-stimulated response to eIF2α phosphorylation is via JNKs alone. Furthermore, we have revealed that ATM is involved in induction of the intracellular responses to UVA and UVB, rather than UVC. These findings demonstrate that wavelength-specific UV irradiations activate differential response signaling pathways converged on the eIF2α phosphorylation. Importantly, we also show evidence that a direct eIF2α kinase PKR is activated though phosphorylation by either RSK1 or MSK1, two downstream kinases of MAPKs/PI-3 kinase-mediated signaling pathways.  相似文献   

20.
INDUCTION OF phr GENE EXPRESSION BY PYRIMIDINE DIMERS IN Escherichia coli   总被引:2,自引:0,他引:2  
The photoreactivating enzyme (PRE) is concerned with mainly two kinds of light wavelength. The PRE splits UVC (254 nm)-induced pyrimidine dimer by absorbing UVA (320–380 nm) or visible light in its chromophore. The present paper demonstrates that the phr gene expression was efficiently induced in an excision defective strain (uvrA∼) after irradiation by UVC and UVB (290-320 nm), but not by UVA and visible light. In addition, the induced activity was significantly depressed by irradiation with UVA and visible light. Therefore we conclude that the phr gene expression can be induced by pyrimidine dimers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号