首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A computational model is proposed for short-fiber reinforced materials with the eigenstrain formulation of the boundary integral equations(BIE)and solved with the newly developed boundary point method(BPM).The model is closely derived from the concept of the equivalent inclusion of Eshelby tensors.Eigenstrains are iteratively determined for each short.fiber embedded in the matrix with various properties via the Eshelby tensors,which can be readily obtained beforehand either through analytical or numerical means.As unknown variables appear only on the boundary of the solution domain,the solution scale of the inhomogeneity problem with the model is greatly reduced.This feature is considered significant because such a traditionally time-consuming problem with inhomogeneity can be solved most cost-effectively compared with existing numerical models of the FEM or the BEM.The numerical examples are presented to compute the overall elastic properties for various short-fiber reinforced composites over a representative volume element(RVE),showing the validity and the effectiveness of the proposed computational modal and the solution procedure.  相似文献   

2.
The low-order polynomial-distributed eigenstrain formulation of the boundary integral equation (BIE) and the corresponding definition of the Eshelby tensors are proposed for the elliptical inhomogeneities in two-dimensional elastic media. Taking the results of the traditional subdomain boundary element method (BEM) as the control, the effectiveness of the present algorithm is verified for the elastic media with a single elliptical inhomogeneity. With the present computational model and algorithm, significant improvements are achieved in terms of the efficiency as compared with the traditional BEM and the accuracy as compared with the constant eigenstrain formulation of the BIE.  相似文献   

3.
In this paper, based on the principle of virtual work, we formulate the equivalent eigenstrain approach for inhomogeneous inclusions. It allows calculating the elastic deformation of an arbitrarily connected and shaped inhomogeneous inclusion, by replacing it with an equivalent homogeneous inclusion problem, whose eigenstrain distribution is determined by an integral equation. The equivalent homogeneous inclusion problem has an explicit solution in terms of a definite integral. The approach allows solving the problems about inclusions of arbitrary shape, multiple inclusion problems, and lends itself to residual stress analysis in non-uniform, heterogeneous media. The fundamental formulation introduced here will find application in the mechanics of composites, inclusions, phase transformation analysis, plasticity, fracture mechanics, etc.  相似文献   

4.
A complete boundary integral formulation for compressible Navier–Stokes equations with time discretization by operator splitting is developed using the fundamental solutions of the Helmholtz operator equation with different order. The numerical results for wall pressure and wall skin friction of two‐dimensional compressible laminar viscous flow around airfoils are in good agreement with field numerical methods. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
IntroductionIthasbeenratheralonghistorythattheBoundaryElementMethod (BEM )isappliedtosolvetheplaneelasticityproblems[1~2 ].However,theEBIE ,whichisequivalenttotheoriginalboundaryvalueproblem ,hasnotbeenfullyappreciatedandsolvedinBEMcommunity .TheconventionalboundaryintegralequationswithindirectvariablesarediscussedthoroughlyanditisshownthatthepreviousresultsarenotEBIE ,i.e .,sometimes,thereexistsnosolutionormorethanonesolutiontothem .Themainkeyliesintheexactformoftheexteriorproblems.I…  相似文献   

6.
A necessary and sufficient condition for the correct formulation of boundary integral equations of harmonic functions is established in the present paper. A super-determined problem of harmonic functions is proposed for the first time. Then a necessary and sufficient condition for the existence of solution of the super-determined problem is proved. At the same time, it is a necessary and sufficient condition for the correct formulation of boundary integral equations with direct unknown quantities. A relation between boundary integral equations and variational principles is discovered for the first time. And a one-to-one correspondence between boundary integral equations with direct and indirect unknown quantities is indicated. The concept and route of the present paper can be applied to other boundary value problems possessing variational principles.  相似文献   

7.
In this paper a variational formulation of the equivalent eigenstrain method is established. A functional of the Hashin–Shtrikman type is proposed such that the solution of the equivalent eigenstrain equation is a unique minimizer of the functional. Moreover, it is also shown that the equivalent eigenstrain equation is the Euler–Lagrange equation of the potential energy of the inclusions. An approximate solution of the equivalent eigenstrain equation is then found as a minimizer of the functional on a finite dimensional span of basic eigenstrains. Special attention is paid to possible symmetries of the problem. The variational formulation is illustrated by determination of effective linear elastic properties. In particular, material with a simple cubic microstructure is considered in detail. A solution for the polynomial radial basic eigenstrains approximation is found. In particular, for the homogeneous eigenstrain approximation, the effective moduli are derived in an exact closed form.  相似文献   

8.
This paper presents a general direct integral formulation for potential flows. The singularities of Green's functions are desingularized theoretically, using a subtracting and adding back technique, so that Gaussian quadrature or any other numerical integration methods can be applied directly to evaluate all the integrals without any difficulty. When high-order quadrature formulas are applied globally, the number of unknowns can be reduced. Interpolation functions are not necessary for unknown variables in the present paper. Therefore, the present method is much simpler and more efficient than the conventional one. Several numerical examples are calculated and compared satisfactorily with analytical solutions or published results. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
IntroductionTheboundaryelementmethod(BEM)providesanattractivealternativefortheanalysisofengineeringproblems.Itsmainadvantagesareeconomicalandparticularlyconvenientforunboundeddomainandstressconcentrationproblems.Theboundaryintegralequation(BIE)isthe…  相似文献   

10.
A complete boundary integral formulation for steady compressible inviscid flows governed by non-linear equations is established by using the specific mass flux as a dependent variable. Thus, the dimensionality of the problem to be solved is reduced by one and the computational mesh to be generated is needed only on the boundary of the domain. It is shown that the boundary integral formulation developed in this paper is equivalent of the results of distributions of the fundamental solutions of the Laplacian operator equation with a different order along the boundaries of the domain. Hence, we have succeeded in establishing the fundamental-solution method for compressible inviscid flows governed by non-linear equations.  相似文献   

11.
对于热弹性平面问题,过去广泛集中在直接变量边界元法研究,本文研究间接变量规则化边界元法,建立了间接变量规则化边界积分方程。和直接边界元法相比,间接法具有降低密度函数的连续性要求、位移梯度方程中的热载荷体积分具有较弱奇异性等优点。数值实施中,用精确单元描述边界几何,不连续插值函数逼近边界量。算例表明,本文方法效率高,所得数值结果与精确解相当吻合。  相似文献   

12.
Itisknownthatmostagriculturalproductsandfoodsareprocessedandtransportedundercertaintemperatureconditions,andthestructuralcomponentsalsoworkunderathermalenvironment.Temperatureinducedstressesusuallyleadtodamageofflawedsolids.Thus,theinvestigationofthecr…  相似文献   

13.
In the present work, an indirect boundary integral method for the numerical solution of Navier–Stokes equations formulated in velocity–vorticity dependent variables is proposed. This wholly integral approach, based on Helmholtz's decomposition, deals directly with the vorticity field and gives emphasis to the establishment of appropriate boundary conditions for the vorticity transport equation. The coupling between the vorticity and the vortical velocity fields is expressed by an iterative procedure. The present analysis shows the usefulness of an integral formulation not only in providing a potentially more efficient computational tool, but also in giving a better understanding to the physics of the phenomenon. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
A boundary integral representation of plane biharmonic function is established rigorously by the method of unanalytical continuation in the present paper. In this representation there are two boundary functions and four constants which bear a one to one correspondence to biharmonic functions. Therefore the set of boundary integral equations with indirect unknowns based on this representation is equivalent to the original differential equation formulation.  相似文献   

15.
A 3D axisymmetric Galerkin boundary integral formulation for potential flow is employed to model two fluids of different densities, one fluid enclosed inside the other. The interface variables are the velocity potential and the normal velocity, and they can be solved for separately, the second linear system being symmetric. The algorithm is validated by comparing with the analytic solutions for a static interior spherical drop over a range of values for the relative densities of exterior and interior fluids and various boundary conditions. For time‐dependent simulations utilizing a level set method for the interface tracking, the accuracy has been checked by comparing against the known oscillation frequency of the sphere. Pinch‐off profiles corresponding to an initial two‐lobe geometry drop and D = 6 are also presented. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

16.
利用边界元法求解瞬态弹性动力学问题时,时域基本解函数的分段连续性和奇异性为该问题的求解带来很大的困难。为了解决时域基本解中的奇异性问题,本文依据柯西主值的定义,对经过时间解析积分之后的时域基本解进行奇异值分解,将其分成奇异和正则积分两部分;其中正则部分可通过采用常规高斯积分方法来计算,而奇异部分具有简单的形式,可以利用解析积分计算。经过上述操作之后,就可以达到直接消除时域基本解中奇异积分的目的。和传统方法相比,本文方法并不依赖静力学基本解来消除奇异性,是一种直接求解方法。最后给定两个数值算例来验证本文提出方法的正确性和可行性,结果表明使用本文算法可以解决弹性动力学边界积分方程中的奇异性问题。  相似文献   

17.
This paper presents a novel meshless Galerkin scheme for modeling incompressible slip Stokes flows in 2D. The boundary value problem is reformulated as boundary integral equations of the first kind which is then converted into an equivalent variational problem with constraint. We introduce a Lagrangian multiplier to incorporate the constraint and apply the moving least‐squares approximations to generate trial and test functions. In this boundary‐type meshless method, boundary conditions can be implemented exactly and system matrices are symmetric. Unlike the domain‐type method, this Galerkin scheme requires only a nodal structure on the bounding surface of a body for approximation of boundary unknowns. The convergence and abstract error estimates of this new approach are given. Numerical examples are also presented to show the efficiency of the method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
This paper describes formulation and implementation of the fast multipole boundary element method (FMBEM) for 2D acoustic problems. The kernel function expansion theory is summarized, and four building blocks of the FMBEM are described in details. They are moment calculation, moment to moment translation, moment to local translation, and local to local translation. A data structure for the quad-tree construction is proposed which can facilitate implementation. An analytical moment expression is derived, which is more accurate, stable, and efficient than direct numerical computation. Numerical examples are presented to demonstrate the accuracy and efficiency of the FMBEM, and radiation of a 2D vibration rail mode is simulated using the FMBEM.  相似文献   

19.
The stress rate integral equations of elastoplaticity are deduced based on Ref. [1] by consistent methods. The point at which the stresses and/or displacements are calculated can be in the body or on the boundary, and in the plastic region or elastic one. The existence of the principal value integral in the plastic region is demonstrated strictly, and the theoretical basis is presented for the paticular solution method by unit initial stress fields. In the present method, programming is easy and general, and the numerical results are excellent. The project supported by the National Natural Science Foundation of China  相似文献   

20.
本文由Reissner型板的不连续位移基本解,根据Betti互换定理,导出了Reissuer型板的不连续位移边界积分方程;结合平面问题的不连续位移边界积分方程─—边界元方法和线弹簧模型,给出了Rrissner型板表面裂纹应力强度因子的线弹簧-不连续位移边界积分方程解法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号