共查询到18条相似文献,搜索用时 46 毫秒
1.
用KARAT-3D全电磁PIC程序,对多注速调管设计模型波束相互作用的物理过程进行3维数值模拟,给出了输出功率、电流等基本的物理参数。在输入电压14 kV,电流20.8 A时候,得到了128 kW的峰值输出功率,峰值效率是43.8%。考察了电子在高频场的运动和电流调制,分析了电流在各互作用腔中的调制,并对多注速调管不同发射度时电子传输进行了研究。结果表明:电子均匀发射时高频场的调制对电流传输效率影响不大,电流和电场调制随着腔的增加而增加。电子能量在输出腔的位置减小很多,电子有一部分能量转化为微波。 相似文献
2.
3.
利用3维电磁场计算软件MAFIA对L波段100 kW多注速调管的多注电子光学系统进行了模拟计算。通过编写宏程序使MAFIA可以计算旁轴电子枪的性能参数,给出了磁场分布并分析了磁场的差异对电子轨迹的影响。模拟表明:中心注磁场具有轴对称性,在均匀区,轨迹的波动性最小,电子轨迹的层流性也最好; 内层电子注径向磁场较小,轨迹的波动性略大于中心注的情况;外层电子注靠近极靴处径向磁场最大,电子轨迹的波动最大,层流性最差。计算并模拟显示了18个电子注在收集极入口处的发散情况。 相似文献
4.
首先通过理论分析确定影响多注电子束引入效率的主要因素,确定初步的结构参数;其次利用三维粒子模拟软件建立Ka波段相对论多注二极管模型进行仿真优化,使电子束引入效率达到89%;并开展了电子束的产生与传输实验研究,验证了粒子模拟仿真结果。在电子束电压502 kV、束流4.34 kA、轴向磁感应强度0.76 T的条件下,电子束引入效率达到了72%,由电子束轰击尼龙靶材获得的电子束束斑图表明,电子束在产生与传输过程中形状未发生畸变,产生的电子束直径约为2 mm。模拟和实验研究验证了设计的强流多注二极管可以产生高品质的电子束和实现高效率的电子束引入。 相似文献
5.
6.
7.
为了提高相对论速调管放大器的工作频率和输出功率,结合三重轴相对论速调管和多注速调管的特点,设计了工作在X波段的同轴强流多注相对论速调管放大器,对强流多注电子束在多注器件结构中的传输、电子束经过输入腔和中间腔后的基波调制以及经过输出腔的微波提取过程进行了实验研究,得到了初步的实验结果.在输入微波功率30 kW,频率9.375 GHz,电子束电压670kV,束流5.3 kA,轴向引导磁感应强度0.8 T的条件下,得到了最大输出微波功率为420 MW,效率为12%,增益为41 dB,输出微波频率与输入微波一致.实验证实了采用同轴强流多注相对论速调管放大器实现X波段高功率微波放大的可行性,为后续更高功率研究打下了基础. 相似文献
8.
相位特性是目前制约多注相对论速调管放大器进一步拓展应用的关键参数之一,为了有效提高器件输出微波相位的稳定性,利用一维非线性理论对X波段强流多注速调管放大器开展了理论研究,得到由强流脉冲特性引起的腔体杂频以及电子束运动速度变化率是造成输出微波相位波动的部分主要原因,同时基于18注实心电子束构成的X波段多注相对论速调管放大器开展了强流脉冲特性对输出微波频率和相位影响的数值计算,最后利用粒子模拟手段对理论结果进行验证。理论和模拟结果一致表明:强流脉冲的前沿和波动都将导致器件内实际工作频率的偏移,并引起相位波动;在脉冲前沿段,脉冲前沿长度越短,器件内实际工作频率偏移越大,相位波动幅度越大;在脉冲平顶段,脉冲波动导致的频率偏移与电压变化率相关,与电压的幅值无关,而脉冲电压波动导致的输出微波相位波动由电压变化率及其变化幅度两者共同决定。 相似文献
9.
相位特性是目前制约多注相对论速调管放大器进一步拓展应用的关键参数之一,为了有效提高器件输出微波相位的稳定性,利用一维非线性理论对X波段强流多注速调管放大器开展了理论研究,得到由强流脉冲特性引起的腔体杂频以及电子束运动速度变化率是造成输出微波相位波动的部分主要原因,同时基于18注实心电子束构成的X波段多注相对论速调管放大器开展了强流脉冲特性对输出微波频率和相位影响的数值计算,最后利用粒子模拟手段对理论结果进行验证。理论和模拟结果一致表明:强流脉冲的前沿和波动都将导致器件内实际工作频率的偏移,并引起相位波动;在脉冲前沿段,脉冲前沿长度越短,器件内实际工作频率偏移越大,相位波动幅度越大;在脉冲平顶段,脉冲波动导致的频率偏移与电压变化率相关,与电压的幅值无关,而脉冲电压波动导致的输出微波相位波动由电压变化率及其变化幅度两者共同决定。 相似文献
10.
为了实现高功率微波源低磁场及长时间稳定运行,开展了S波段GW级多注相对论速调管放大器(RKA)的理论模拟设计与实验研究。首先,采用一维大信号非线性理论软件优化设计了S波段4腔多注RKA,找到了器件工作的最佳参数:采用电压550 kV、束流4.7 kA的14注RKA,获得功率1.1 GW、效率43%的输出微波。随后,采用粒子模拟软件对理论设计的束波互作用参数进行了验证,获得了输出功率992 MW,器件效率为37%。最后,根据模拟参数开展了器件重频长时间运行实验研究。采用紧凑同轴Marx功率源驱动S波段四腔多注RKA,在电压530 kV、束流5.4 kA、重频20 Hz、运行时间1 s、引导磁场强度0.39 T、注入微波功率1.7 kW的条件下,获得了功率934 MW、脉宽69 ns的输出微波,束波转换效率33%。在器件重频20 Hz、运行时间10 min条件下,坚实了平均功率889 MW、平均脉宽42 ns的输出微波。该研究结果为S波段RKA的低磁场和长时间运行打下了的技术基础。 相似文献
11.
提出了一种新结构的高功率径向强流速调管振荡器,该器件利用折叠式同轴谐振腔的微波场与接近空间电荷限制电流的径向电子束强烈相互作用产生高功率微波。首先对这种器件的实现机理进行了初步的分析,提出了有间隙电压情况时的径向同轴间隙的空间电荷限制电流1维近似估计模型。分析表明:对于电子束直流接近但小于直流空间限制电流的径向速调管,当有调制间隙电压时,空间限制电流要小于无调制间隙电压情况下的直流空间限制电流,径向强流电子束电流接近和超过空间电荷限制电流时会出现强烈的调制。然后用PIC程序对其特性进行了粒子模拟,在二极管输入电压500 kV、电子束电流为30 kA条件下,最终得到了峰值功率6 GW、频率1.3 GHz的微波输出。 相似文献
12.
利用3维软件设计并模拟了适用于X波段高功率带状注速调管的“Ⅱ”形谐振腔,根据模拟结果分析了腔体各尺寸对电场均匀性的影响;建立了平面对称结构的3维高频互作用系统模拟平台,应用此平台讨论了扼流器法和漂移管窄壁开槽法这两种抑制漂移管中非工作模式的方法;分析了漂移管的尺寸及漂移头对谐振腔内场分布的影响。研究表明:波导高度、耦合腔宽度和高度对带状注速调管谐振腔间隙的电场均匀性影响较大;而波导长度和宽度、耦合腔长度对该电场均匀性影响不大;腔体连接处加上漂移头可使场分布更加集中;该型带状注速调管谐振腔能够产生均匀的电场,为提高注波互作用效率奠定了基础。 相似文献
13.
14.
带状注速调管可以在高频段实现高功率微波输出,电子光学系统是带状注速调管的关键部件。阐述了Wiggler双平面聚焦理论,设计了新型椭圆形柱面阴极和椭圆形聚焦极结构,阴极曲率半径为17 mm,长轴10 mm,短轴4 mm;聚焦极长轴28.8 mm,短轴10.4 mm。采用这种结构可以直接产生椭圆形带状电子注,且阴极发射电流密度较为均匀。设计了周期长度为8 mm,总长度为108 mm,中间带有凹槽并可以实现双平面聚焦的Wiggler结构,模拟显示电子注填充因子在75%左右,通过率达到100%。设计了新型的菱形收集极结构,电子轨迹在收集极内发散均匀。 相似文献
15.
利用3维软件设计并模拟了适用于X波段高功率带状注速调管的“Ⅱ”形谐振腔,根据模拟结果分析了腔体各尺寸对电场均匀性的影响;建立了平面对称结构的3维高频互作用系统模拟平台,应用此平台讨论了扼流器法和漂移管窄壁开槽法这两种抑制漂移管中非工作模式的方法;分析了漂移管的尺寸及漂移头对谐振腔内场分布的影响。研究表明:波导高度、耦合腔宽度和高度对带状注速调管谐振腔间隙的电场均匀性影响较大;而波导长度和宽度、耦合腔长度对该电场均匀性影响不大;腔体连接处加上漂移头可使场分布更加集中;该型带状注速调管谐振腔能够产生均匀的电场,为提高注波互作用效率奠定了基础。 相似文献
16.
17.
18.
带状注速调管可以在高频段实现高功率微波输出,电子光学系统是带状注速调管的关键部件。阐述了Wiggler双平面聚焦理论,设计了新型椭圆形柱面阴极和椭圆形聚焦极结构,阴极曲率半径为17 mm,长轴10 mm,短轴4 mm;聚焦极长轴28.8 mm,短轴10.4 mm。采用这种结构可以直接产生椭圆形带状电子注,且阴极发射电流密度较为均匀。设计了周期长度为8 mm,总长度为108 mm,中间带有凹槽并可以实现双平面聚焦的Wiggler结构,模拟显示电子注填充因子在75%左右,通过率达到100%。设计了新型的菱形收集极结构,电子轨迹在收集极内发散均匀。 相似文献