首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 405 毫秒
1.
We prove the existence of positive \(\omega \)-periodic solutions for the double-delayed differential equation
$$\begin{aligned} x^{\prime }(t)-a(t)g(x(t))x(t)=-\lambda (b(t)f(x(t-\tau (t))+c(t)h(x(t-\nu (t))), \end{aligned}$$
where \(\lambda \) is a positive parameter, \(a,b,c,\tau ,\nu \in C(\mathbb {R}, \mathbb {R})\) are \(\omega \)-periodic functions with \(a,b\ge 0,a,b\not \equiv 0,f,g,h\in C([0,\infty ),\mathbb {R})\) with \(g>0\) on \((0,\infty ),\) \(\ h\) is bounded, f is either superlinear or sublinear at \(\infty \) and could change sign.
  相似文献   

2.
Let \(\mathbb {F}_{q}\) be the finite field with \(q=p^{m}\) elements, where p is an odd prime and m is a positive integer. For a positive integer t, let \(D\subset \mathbb {F}^{t}_{q}\) and let \({\mathrm {Tr}}_{m}\) be the trace function from \(\mathbb {F}_{q}\) onto \(\mathbb {F}_{p}\). In this paper, let \(D=\{(x_{1},x_{2},\ldots ,x_{t}) \in \mathbb {F}_{q}^{t}\setminus \{(0,0,\ldots ,0)\} : {\mathrm {Tr}}_{m}(x_{1}+x_{2}+\cdots +x_{t})=0\},\) we define a p-ary linear code \(\mathcal {C}_{D}\) by
$$\begin{aligned} \mathcal {C}_{D}=\{\mathbf {c}(a_{1},a_{2},\ldots ,a_{t}) : (a_{1},a_{2},\ldots ,a_{t})\in \mathbb {F}^{t}_{q}\}, \end{aligned}$$
where
$$\begin{aligned} \mathbf {c}(a_{1},a_{2},\ldots ,a_{t})=({\mathrm {Tr}}_{m}(a_{1}x^{2}_{1}+a_{2}x^{2}_{2}+\cdots +a_{t}x^{2}_{t}))_{(x_{1},x_{2},\ldots ,x_{t}) \in D}. \end{aligned}$$
We shall present the complete weight enumerators of the linear codes \(\mathcal {C}_{D}\) and give several classes of linear codes with a few weights. This paper generalizes the results of Yang and Yao (Des Codes Cryptogr, 2016).
  相似文献   

3.
In this article, we consider the following fractional Hamiltonian systems:
$$\begin{aligned} {_{t}}D_{\infty }^{\alpha }({_{-\infty }}D_{t}^{\alpha }u) + \lambda L(t)u = \nabla W(t, u), \;\;t\in \mathbb {R}, \end{aligned}$$
where \(\alpha \in (1/2, 1)\), \(\lambda >0\) is a parameter, \(L\in C(\mathbb {R}, \mathbb {R}^{n\times n})\) and \(W \in C^{1}(\mathbb {R} \times \mathbb {R}^n, \mathbb {R})\). Unlike most other papers on this problem, we require that L(t) is a positive semi-definite symmetric matrix for all \(t\in \mathbb {R}\), that is, \(L(t) \equiv 0\) is allowed to occur in some finite interval \(\mathbb {I}\) of \(\mathbb {R}\). Under some mild assumptions on W, we establish the existence of nontrivial weak solution, which vanish on \(\mathbb {R} \setminus \mathbb {I}\) as \(\lambda \rightarrow \infty ,\) and converge to \(\tilde{u}\) in \(H^{\alpha }(\mathbb {R})\); here \(\tilde{u} \in E_{0}^{\alpha }\) is nontrivial weak solution of the Dirichlet BVP for fractional Hamiltonian systems on the finite interval \(\mathbb {I}\). Furthermore, we give the multiplicity results for the above fractional Hamiltonian systems.
  相似文献   

4.
We consider the model space \(\mathbb {M}^{n}_{K}\) of constant curvature K and dimension \(n\ge 1\) (Euclidean space for \(K=0\), sphere for \(K>0\) and hyperbolic space for \(K<0\)), and we show that given a function \(\rho :[0,\infty )\rightarrow [0, \infty )\) with \(\rho (0)=\mathrm {dist}(x,y)\) there exists a coadapted coupling (X(t), Y(t)) of Brownian motions on \(\mathbb {M}^{n}_{K}\) starting at (xy) such that \(\rho (t)=\mathrm {dist}(X(t),Y(t))\) for every \(t\ge 0\) if and only if \(\rho \) is continuous and satisfies for almost every \(t\ge 0\) the differential inequality
$$\begin{aligned} -(n-1)\sqrt{K}\tan \left( \tfrac{\sqrt{K}\rho (t)}{2}\right) \le \rho '(t)\le -(n-1)\sqrt{K}\tan \left( \tfrac{\sqrt{K}\rho (t)}{2}\right) +\tfrac{2(n-1)\sqrt{K}}{\sin (\sqrt{K}\rho (t))}. \end{aligned}$$
In other words, we characterize all coadapted couplings of Brownian motions on the model space \(\mathbb {M}^{n}_{K}\) for which the distance between the processes is deterministic. In addition, the construction of the coupling is explicit for every choice of \(\rho \) satisfying the above hypotheses.
  相似文献   

5.
This paper is concerned with the following Kirchhoff-type equation
$$\begin{aligned} -\left( a+b\int _{\mathbb {R}^3}|\nabla {u}|^2\mathrm {d}x\right) \triangle u+V(x)u=f(x, u), \quad x\in \mathbb {R}^{3}, \end{aligned}$$
where \(V\in \mathcal {C}(\mathbb {R}^{3}, (0,\infty ))\), \(f\in \mathcal {C}({\mathbb {R}}^{3}\times \mathbb {R}, \mathbb {R})\), V(x) and f(xt) are periodic or asymptotically periodic in x. Using weaker assumptions \(\lim _{|t|\rightarrow \infty }\frac{\int _0^tf(x, s)\mathrm {d}s}{|t|^3}=\infty \) uniformly in \(x\in \mathbb {R}^3\) and
$$\begin{aligned}&\left[ \frac{f(x,\tau )}{\tau ^3}-\frac{f(x,t\tau )}{(t\tau )^3} \right] \mathrm {sign}(1-t) +\theta _0V(x)\frac{|1-t^2|}{(t\tau )^2}\ge 0, \quad \\&\quad \forall x\in \mathbb {R}^3,\ t>0, \ \tau \ne 0 \end{aligned}$$
with a constant \(\theta _0\in (0,1)\), instead of the common assumption \(\lim _{|t|\rightarrow \infty }\frac{\int _0^tf(x, s)\mathrm {d}s}{|t|^4}=\infty \) uniformly in \(x\in \mathbb {R}^3\) and the usual Nehari-type monotonic condition on \(f(x,t)/|t|^3\), we establish the existence of Nehari-type ground state solutions of the above problem, which generalizes and improves the recent results of Qin et al. (Comput Math Appl 71:1524–1536, 2016) and Zhang and Zhang (J Math Anal Appl 423:1671–1692, 2015). In particular, our results unify asymptotically cubic and super-cubic nonlinearities.
  相似文献   

6.
We consider the stochastic differential equation (SDE) of the form
$$\begin{array}{@{}rcl@{}} \left\{\begin{array}{rcl} dX^ x(t) &=& \sigma(X(t-)) dL(t) \\ X^ x(0)&=&x,\quad x\in{\mathbb{R}}^ d, \end{array}\right. \end{array} $$
where \(\sigma :{\mathbb {R}}^ d\to {\mathbb {R}}^ d\) is globally Lipschitz continuous and L={L(t):t≥0} is a Lévy process. Under this condition on σ it is well known that the above problem has a unique solution X. Let \((\mathcal {P}_{t})_{t\ge 0}\) be the Markovian semigroup associated to X defined by \(\left ({\mathcal {P}}_{t} f\right ) (x) := \mathbb {E} \left [ f(X^ x(t))\right ]\), t≥0, \(x\in {\mathbb {R}}^{d}\), \(f\in \mathcal {B}_{b}({\mathbb {R}}^{d})\). Let B be a pseudo–differential operator characterized by its symbol q. Fix \(\rho \in \mathbb {R}\). In this article we investigate under which conditions on σ, L and q there exist two constants γ>0 and C>0 such that
$$\left| B {\mathcal{P}}_{t} u \right|_{H^{\rho}_{2}} \le C \, t^{-\gamma} \,\left| u \right|_{H^{\rho}_{2}}, \quad \forall u \in {H^{\rho}_{2}}(\mathbb{R}^{d} ),\, t>0. $$
  相似文献   

7.
We consider the Anderson polymer partition function
$$\begin{aligned} u(t):=\mathbb {E}^X\left[ e^{\int _0^t \mathrm {d}B^{X(s)}_s}\right] \,, \end{aligned}$$
where \(\{B^{x}_t\,;\, t\ge 0\}_{x\in \mathbb {Z}^d}\) is a family of independent fractional Brownian motions all with Hurst parameter \(H\in (0,1)\), and \(\{X(t)\}_{t\in \mathbb {R}^{\ge 0}}\) is a continuous-time simple symmetric random walk on \(\mathbb {Z}^d\) with jump rate \(\kappa \) and started from the origin. \(\mathbb {E}^X\) is the expectation with respect to this random walk. We prove that when \(H\le 1/2\), the function u(t) almost surely grows asymptotically like \(e^{\lambda t}\), where \(\lambda >0\) is a deterministic number. More precisely, we show that as t approaches \(+\infty \), the expression \(\{\frac{1}{t}\log u(t)\}_{t\in \mathbb {R}^{>0}}\) converges both almost surely and in the \(\hbox {L}^1\) sense to some positive deterministic number \(\lambda \). For \(H>1/2\), we first show that \(\lim _{t\rightarrow \infty } \frac{1}{t}\log u(t)\) exists both almost surely and in the \(\hbox {L}^1\) sense and equals a strictly positive deterministic number (possibly \(+\infty \)); hence, almost surely u(t) grows asymptotically at least like \(e^{\alpha t}\) for some deterministic constant \(\alpha >0\). On the other hand, we also show that almost surely and in the \(\hbox {L}^1\) sense, \(\limsup _{t\rightarrow \infty } \frac{1}{t\sqrt{\log t}}\log u(t)\) is a deterministic finite real number (possibly zero), hence proving that almost surely u(t) grows asymptotically at most like \(e^{\beta t\sqrt{\log t}}\) for some deterministic positive constant \(\beta \). Finally, for \(H>1/2\) when \(\mathbb {Z}^d\) is replaced by a circle endowed with a Hölder continuous covariance function, we show that \(\limsup _{t\rightarrow \infty } \frac{1}{t}\log u(t)\) is a deterministic finite positive real number, hence proving that almost surely u(t) grows asymptotically at most like \(e^{c t}\) for some deterministic positive constant c.
  相似文献   

8.
In this paper, we study the existence and multiplicity of homoclinic solutions for the following second-order p(t)-Laplacian–Hamiltonian systems
$$\frac{{\rm d}}{{\rm d}t}(|\dot{u}(t)|^{p(t)-2}\dot{u}(t))-a(t)|u(t)|^{p(t)-2}u(t)+\nabla W(t,u(t))=0,$$
where \({t \in \mathbb{R}}\), \({u \in \mathbb{R}^n}\), \({p \in C(\mathbb{R},\mathbb{R})}\) with p(t) > 1, \({a \in C(\mathbb{R},\mathbb{R})}\), \({W\in C^1(\mathbb{R}\times\mathbb{R}^n,\mathbb{R})}\) and \({\nabla W(t,u)}\) is the gradient of W(t, u) in u. The point is that, assuming that a(t) is bounded in the sense that there are constants \({0<\tau_1<\tau_2<\infty}\) such that \({\tau_1\leq a(t)\leq \tau_2 }\) for all \({t \in \mathbb{R}}\) and W(t, u) is of super-p(t) growth or sub-p(t) growth as \({|u|\rightarrow \infty}\), we provide two new criteria to ensure the existence and multiplicity of homoclinic solutions, respectively. Recent results in the literature are extended and significantly improved.
  相似文献   

9.
In this paper, we study the existence and uniqueness of Stepanov-almost periodic mild solution to the non-autonomous neutral functional differential equation
$$\begin{aligned} \frac{{\hbox {d}}}{\hbox {d}t}[u(t)-F(t,u(t-\alpha (t)))]= & {} A(t)[u(t)-F(t,u(t-\alpha (t)))]\\&+\,G(t,u(t),u(t-\alpha (t))),\quad t\in \mathbb {R}, \end{aligned}$$
in a Banach space \(\mathbb {X},\) where the family of linear operators A(t) satisfies the ‘Acquistapace–Terreni’ conditions, the evolution family generated by \(A(t),t\in \mathbb {R},\) is exponentially stable, \((\gamma -A(\cdot ))^{-1}\) and \(\alpha (\cdot )\) are almost periodic, and F and G are Stepanov-almost periodic continuous functions.
  相似文献   

10.
Let K be a compact set in \( {{\mathbb R}^n} \). For \( 1 \leqslant p \leqslant \infty \), the Bernstein space \( B_K^p \) is the Banach space of all functions \( f \in {L^p}\left( {{{\mathbb R}^n}} \right) \)such that their Fourier transform in a distributional sense is supported on K. If \( f \in B_K^p \), then f is continuous on \( {{\mathbb R}^n} \) and has an extension onto the complex space \( {{\mathbb C}^n} \) to an entire function of exponential type K. We study the approximation of functions in \( B_K^p \) by finite τ -periodic exponential sums of the form
$ \sum\limits_m {{c_m}{e^{2\pi {\text{i}}\left( {x,m} \right)/\tau }}} $
in the \( {L^p}\left( {\tau {{\left[ { - 1/2,1/2} \right]}^n}} \right) \)-norm as τ → ∞ when K is a polytope in \( {{\mathbb R}^n} \).
  相似文献   

11.
Assuming that the stock price X follows a geometric Brownian motion with drift \(\mu \in \mathbb {R}\) and volatility \(\sigma >0\), and letting \(\mathsf {P}_{\!x}\) denote a probability measure under which X starts at \(x>0\), we study the dynamic version of the nonlinear mean–variance optimal stopping problem
$$\begin{aligned} \sup _\tau \Big [ \mathsf {E}\,\!_{X_t}(X_\tau ) - c\, \mathsf {V}ar\,\!_{\!X_t}(X_\tau ) \Big ] \end{aligned}$$
where t runs from 0 onwards, the supremum is taken over stopping times \(\tau \) of X, and \(c>0\) is a given and fixed constant. Using direct martingale arguments we first show that when \(\mu \le 0\) it is optimal to stop at once and when \(\mu \ge \sigma ^2\!/2\) it is optimal not to stop at all. By employing the method of Lagrange multipliers we then show that the nonlinear problem for \(0 < \mu < \sigma ^2\!/2\) can be reduced to a family of linear problems. Solving the latter using a free-boundary approach we find that the optimal stopping time is given by
$$\begin{aligned} \tau _* = \inf \,\! \left\{ \, t \ge 0\; \vert \; X_t \ge \tfrac{\gamma }{c(1-\gamma )}\, \right\} \end{aligned}$$
where \(\gamma = \mu /(\sigma ^2\!/2)\). The dynamic formulation of the problem and the method of solution are applied to the constrained problems of maximising/minimising the mean/variance subject to the upper/lower bound on the variance/mean from which the nonlinear problem above is obtained by optimising the Lagrangian itself.
  相似文献   

12.
A string is a pair \({(L, \mathfrak{m})}\) where \({L \in[0, \infty]}\) and \({\mathfrak{m}}\) is a positive, possibly unbounded, Borel measure supported on [0, L]; we think of L as the length of the string and of \({\mathfrak{m}}\) as its mass density. To each string a differential operator acting in the space \({L^2(\mathfrak{m})}\) is associated. Namely, the Kre?n–Feller differential operator \({-D_{\mathfrak{m}}D_x}\) ; its eigenvalue equation can be written, e.g., as
$$f^{\prime}(x) + z \int_0^L f(y)\,d\mathfrak{m}(y) = 0,\quad x \in\mathbb R,\ f^{\prime}(0-) = 0.$$
A positive Borel measure τ on \({\mathbb R}\) is called a (canonical) spectral measure of the string \({\textsc S[L, \mathfrak{m}]}\) , if there exists an appropriately normalized Fourier transform of \({L^2(\mathfrak{m})}\) onto L 2(τ). In order that a given positive Borel measure τ is a spectral measure of some string, it is necessary that: (1) \({\int_{\mathbb R} \frac{d\tau(\lambda)}{1+|\lambda|} < \infty}\) . (2) Either \({{\rm supp} \tau \subseteq [0, \infty)}\) , or τ is discrete and has exactly one point mass in (?∞, 0). It is a deep result, going back to Kre?n in the 1950’s, that each measure with \({\int_{\mathbb R}\frac{d\tau(\lambda)}{1+|\lambda|} < \infty}\) and \({{\rm supp} \tau \subseteq [0, \infty)}\) is a spectral measure of some string, and that this string is uniquely determined by τ. The question remained open, which conditions characterize whether a measure τ with \({{\rm supp} \tau \not\subseteq [0, \infty)}\) is a spectral measure of some string. In the present paper, we answer this question. Interestingly, the solution is much more involved than the first guess might suggest.
  相似文献   

13.
Let \({\mathbb {K}(\mathbb {R}^{d})}\) denote the cone of discrete Radon measures on \(\mathbb {R}^{d}\). There is a natural differentiation on \(\mathbb {K}(\mathbb {R}^{d})\): for a differentiable function \(F:\mathbb {K}(\mathbb {R}^{d})\to \mathbb {R}\), one defines its gradient \(\nabla ^{\mathbb {K}}F\) as a vector field which assigns to each \(\eta \in \mathbb {K}(\mathbb {R}^{d})\) an element of a tangent space \(T_{\eta }(\mathbb {K}(\mathbb {R}^{d}))\) to \(\mathbb {K}(\mathbb {R}^{d})\) at point η. Let \(\phi :\mathbb {R}^{d}\times \mathbb {R}^{d}\to \mathbb {R}\) be a potential of pair interaction, and let μ be a corresponding Gibbs perturbation of (the distribution of) a completely random measure on \(\mathbb {R}^{d}\). In particular, μ is a probability measure on \(\mathbb {K}(\mathbb {R}^{d})\) such that the set of atoms of a discrete measure \(\eta \in \mathbb {K}(\mathbb {R}^{d})\) is μ-a.s. dense in \(\mathbb {R}^{d}\). We consider the corresponding Dirichlet form
$$\mathcal{E}^{\mathbb{K}}(F,G)={\int}_{\mathbb K(\mathbb{R}^{d})}\langle\nabla^{\mathbb{K}} F(\eta), \nabla^{\mathbb{K}} G(\eta)\rangle_{T_{\eta}(\mathbb{K})}\,d\mu(\eta). $$
Integrating by parts with respect to the measure μ, we explicitly find the generator of this Dirichlet form. By using the theory of Dirichlet forms, we prove the main result of the paper: If d ≥ 2, there exists a conservative diffusion process on \(\mathbb {K}(\mathbb {R}^{d})\) which is properly associated with the Dirichlet form \(\mathcal {E}^{\mathbb {K}}\).
  相似文献   

14.
15.
We consider the perturbed Schrödinger equation
$\left\{\begin{array}{ll}{- \varepsilon ^2 \Delta u + V(x)u = P(x)|u|^{p - 2} u + k(x)|u|^{2* - 2} u} &; {\text{for}}\, x \in {\mathbb{R}}^N\\ \qquad \qquad \quad {u(x) \rightarrow 0} &; \text{as}\, {|x| \rightarrow \infty} \end{array} \right.$
where \(N\geq 3, \ 2^*=2N/(N-2)\) is the Sobolev critical exponent, \(p\in (2, 2^*)\) , P(x) and K(x) are bounded positive functions. Under proper conditions on V we show that it has at least one positive solution provided that \(\varepsilon\leq{\mathcal{E}}\) ; for any \(m\in{\mathbb{N}}\) , it has m pairs of solutions if \(\varepsilon\leq{\mathcal{E}}_{m}\) ; and suppose there exists an orthogonal involution \(\tau:{\mathbb{R}}^{N}\to{\mathbb{R}}^{N}\) such that V(x), P(x) and K(x) are τ -invariant, then it has at least one pair of solutions which change sign exactly once provided that \(\varepsilon\leq{\mathcal{E}}\) , where \({\mathcal{E}}\) and \({\mathcal{E}}_{m}\) are sufficiently small positive numbers. Moreover, these solutions \(u_\varepsilon\to 0\) in \(H^1({\mathbb{R}}^N)\) as \(\varepsilon\to 0\) .
  相似文献   

16.
In this paper we address the regularity issue of weak solution for the following linear drift–diffusion system with pressure
$$\begin{aligned} \partial _t u + b\cdot \nabla u -\Delta u + \nabla p = 0,\quad \mathrm {div}\,u=0,\quad u|_{t=0}(x)=u_0(x), \end{aligned}$$
where \(x\in \mathbb {R}^n\) and b is a given divergence-free vector field. Under some assumptions of the drift field b in the critical sense, and for the initial data \(u_0\in (L^2(\mathbb {R}^n))^n\), we prove that there exists a weak solution u(t) to this system such that u(t) for any time \(t>0\) is \(\alpha \)-Hölder continuous with \(\alpha \in (0,1)\). The proof of the Hölder regularity result utilizes a maximum-principle type method to improve the regularity of weak solution step by step.
  相似文献   

17.
Let \({\mathbb {F}}_q\) be a finite field with q elements such that \(l^v||(q^t-1)\) and \(\gcd (l,q(q-1))=1\), where lt are primes and v is a positive integer. In this paper, we give all primitive idempotents in a ring \(\mathbb F_q[x]/\langle x^{l^m}-a\rangle \) for \(a\in {\mathbb {F}}_q^*\). Specially for \(t=2\), we give the weight distributions of all irreducible constacyclic codes and their dual codes of length \(l^m\) over \({\mathbb {F}}_q\).  相似文献   

18.
Let \(\{X_i, i\ge 1\}\) be i.i.d. \(\mathbb {R}^d\)-valued random vectors attracted to operator semi-stable laws and write \(S_n=\sum _{i=1}^{n}X_i\). This paper investigates precise large deviations for both the partial sums \(S_n\) and the random sums \(S_{N(t)}\), where N(t) is a counting process independent of the sequence \(\{X_i, i\ge 1\}\). In particular, we show for all unit vectors \(\theta \) the asymptotics
$$\begin{aligned} {\mathbb P}(|\langle S_n,\theta \rangle |>x)\sim n{\mathbb P}(|\langle X,\theta \rangle |>x) \end{aligned}$$
which holds uniformly for x-region \([\gamma _n, \infty )\), where \(\langle \cdot , \cdot \rangle \) is the standard inner product on \(\mathbb {R}^d\) and \(\{\gamma _n\}\) is some monotone sequence of positive numbers. As applications, the precise large deviations for random sums of real-valued random variables with regularly varying tails and \(\mathbb {R}^d\)-valued random vectors with weakly negatively associated occurrences are proposed. The obtained results improve some related classical ones.
  相似文献   

19.
We discuss the notion of characteristic Lie algebra of a hyperbolic PDE. The integrability of a hyperbolic PDE is closely related to the properties of the corresponding characteristic Lie algebra χ. We establish two explicit isomorphisms:
  1. 1)
    the first one is between the characteristic Lie algebra \(\chi (\sinh {u})\) of the sinh-Gordon equation \(u_{xy}=\sinh {u}\) and the non-negative part \({\mathcal {L}}({\mathfrak {sl}}(2,{\mathbb {C}}))^{\ge 0}\) of the loop algebra of \({\mathfrak {sl}}(2,{\mathbb {C}})\) that corresponds to the Kac-Moody algebra \(A_{1}^{(1)}\)
    $$\chi(\sinh{u})\cong {\mathcal{L}}({\mathfrak{s}\mathfrak{l}}(2,{\mathbb{C}}))^{\ge 0}={\mathfrak{s}\mathfrak{l}}(2, {\mathbb{C}}) \otimes {\mathbb{C}}[t]. $$
     
  2. 2)
    the second isomorphism is for the Tzitzeica equation uxy = eu + e??2u
    $$\chi(e^{u}{+}e^{-2u}) \cong {\mathcal{L}}({\mathfrak{s}\mathfrak{l}}(3,{\mathbb{C}}), \mu)^{\ge0}=\bigoplus_{j = 0}^{+\infty}{\mathfrak{g}}_{j (\text{mod} \; 2)} \otimes t^{j}, $$
    where \({\mathcal {L}}({\mathfrak {sl}}(3,{\mathbb {C}}), \mu )=\bigoplus _{j \in {\mathbb {Z}}}{\mathfrak {g}}_{j (\text {mod} \; 2)} \otimes t^{j}\) is the twisted loop algebra of the simple Lie algebra \({\mathfrak {sl}}(3,{\mathbb {C}})\) that corresponds to the Kac-Moody algebra \(A_{2}^{(2)}\).
     
Hence the Lie algebras \(\chi (\sinh {u})\) and χ(eu + e??2u) are slowly linearly growing Lie algebras with average growth rates \(\frac {3}{2}\) and \(\frac {4}{3}\) respectively.  相似文献   

20.
Let \(f: \mathbb {C}^n \rightarrow \mathbb {C}^k\) be a holomorphic function and set \(Z = f^{-1}(0)\). Assume that Z is non-empty. We prove that for any \(r > 0\),
$$\begin{aligned} \gamma _n(Z + r) \ge \gamma _n(E + r), \end{aligned}$$
where \(Z + r\) is the Euclidean r-neighborhood of Z; \(\gamma _n\) is the standard Gaussian measure in \(\mathbb {C}^n\), and \(E \subseteq \mathbb {C}^n\) is an \((n-k)\)-dimensional, affine, complex subspace whose distance from the origin is the same as the distance of Z from the origin.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号