首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrochemically controlled solid-phase extractions of anions were interfaced on-line to electrospray mass spectrometry (ESI-MS) and inductively coupled plasma mass spectrometry (ICP-MS), using polypyrrole coated electrodes and a thin-layer electrochemical (EC) flow cell. The results indicate that electrochemically controlled solid-phase extraction (EC-SPE) can be used as a versatile potential controlled sample preparation technique for a range of anions and that the properties of the polypyrrole coatings can be modified by altering the electrodeposition conditions. In the present study, the influence of interfering anions (i.e., fluoride and sulfate), and the anion used during the electropolymerisation, on the bromide extraction recovery was investigated for EC-SPE interfaced to ICP-MS. The results of these experiments show that the interference due to the presence of similar concentrations of sulfate can be reduced when using a polypyrrole coating electropolymerised in the presence of bromide ions. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements were also used to study the morphology of the coatings, as well as the variations in the film thickness within the coatings. The effect of different desorption techniques on the bromide preconcentration factor in the ICP-MS on-line flow system was also examined. Stopped-flow desorption was found to give rise to significantly increased preconcentration factors in comparison with desorptions in flowing solutions. While the desorption efficiency depends on the type of desorption electrolyte (the electrolyte in which the desorption takes place), due to the competing influx of cations, the influence of the pH on the switching charge of the polypyrrole coating was found to be small, at constant ionic strength. To study the applicability of the EC-SPE technique with respect to real samples, investigations were also made with tap water samples spiked with different bromide concentrations. The results of these experiments, which were carried out using a modified thin-layer EC flow cell allowing in situ polymerisation of polypyrrole yielding a polymer plug covering the cross section of the channel, demonstrate that 3 microM concentrations of bromide could be detected in the tap water sample. This demonstrates that the extraction technique allows extractions of low concentrations of ions in the presence of significantly higher concentrations of other similar ions. The fact that the extraction and desorption steps are electrochemically controlled makes EC-SPE particularly well suited for inclusion in miniaturised lab-on-a-chip systems.  相似文献   

2.
When explosives are present in natural aqueous media, their concentration is usually limited to trace levels. A preconcentration step able to remove matrix interferences and to enhance sensitivity is therefore necessary. In the present study, we evaluated solid-phase microextraction (SPME) technique for the recovery of nine explosives from aqueous samples using high-performance liquid chromatography with ultraviolet detection (HPLC-UV). Several parameters, including adsorption and desorption time, coating type, rate of stirring, salt addition, and pH, were optimized to obtain reproducible data with good accuracy. Carbowax coating was the only adsorbent found capable of adsorbing all explosives including nitramines. Method detection limits (MDL) were found to range from 1 to 10 microg/L, depending on the analyte. SPME/HPLC-UV coupling was then applied to the analysis of natural ocean and groundwater samples and compared to conventional solid-phase extraction (SPE/HPLC-UV). Excellent agreement was observed between both techniques, but with an analysis time around five times shorter, SPME/HPLC-UV was considered to be applicable for quantitative analysis of explosives.  相似文献   

3.
Tamer U  Ertaş N  Udum YA  Sahin Y  Pekmez K  Yıldız A 《Talanta》2005,67(1):245-251
A method for the extraction and selective determination of cations is proposed using electro-synthesized overoxidized sulfonated polypyrrole film. The polymer film is used for the selective extraction of trace levels of nickel and cadmium ions by solid-phase microextraction (SPME). The cation uptake and release properties of the overoxidized sulfonated polypyrrole film electrode were examined under both open circuit and controlled potential conditions for prospective applications in electrochemically controlled solid-phase microextraction. Increased extraction efficiency and selectivity toward cations were achieved in high saline content of water. Simple preparation of film coatings on a platinum wire was possible using a constant potential method. Applied positive and negative potentials facilitated the extraction and desorption of cations, respectively. Nickel and cadmium ions were desorbed into sample aliquot and determined by electrothermal atomic absorption spectrometry (ETAAS). The cation uptake and release mechanism is affected both by the cation exchange at the negative sulfonate and carboxylate moiety on the film and the altered solution pH occurring at the counter electrode caused by the applied potential. The method was validated using a standard reference material and tested for the determination of cadmium ion in commercial table salt samples.  相似文献   

4.
A nanostructure fiber based on conducting polypyrrole synthesized by an electrochemical method has been developed, and used for electrochemically switching solid-phase microextraction (ES-SPME). The ES-SPME was prepared by the doping of eriochrome blue in polypyrrole (PPy-ECB) and used for selectively extracting the Ni(II) cation in the presence of some transition and heavy metal ions. The cation-exchange behavior of electrochemically prepared polypyrrole on stainless-steel with and without eriochrome blue (ECB) dye was characterized using ICP-OES analysis. The effects of the scan rate for electrochemical synthesis, uptake and the release potential on the extraction behavior of the PPy-ECB conductive fiber were studied. Uptake and release time profiles show that the process of electrically switched cation exchange could be completed within 250 s. The results of the present study point concerning the possibility of developing a selective extraction process for Ni(II) from waste water was explored using such a nanostructured PPy-ECB film through an electrically switched cation exchange.  相似文献   

5.
Sorbent preconcentration offers good strategies to overcome the poor detection limits of capillary electrophoresis (CE). The present review focuses on the recent trends of the coupling between sorbent preconcentration techniques, namely solid-phase extraction (SPE) and solid-phase microextraction (SPME), to capillary electrophoresis (CE). Special attention is given to their environmental and biological application. We also discuss the most important advantages and disadvantages of the different methodologies and briefly outline the new trends of the coupling between sorbent preconcentration and CE.  相似文献   

6.
In the present work, an analytical method for the simultaneous determination of seven non steroidal anti-inflammatory drugs (naproxen, ketoprofen, diclofenac, piroxicam, indomethacin, sulindac and diflunisal) and the anticonvulsant carbamazepine is reported. The method involves preconcentration and clean-up by solid-phase microextraction using polydimethylsiloxane/divinylbenzene fibers, followed by liquid chromatography with diode array detection analysis. Parameters that affect the efficiency of the solid-phase microextraction step such as soaking solvent, soaking period, desorption period, stirring rate, extraction time, sample pH, ionic strength, organic solvent and temperature were investigated using a Plackett-Burman screening design. Then, the factors presenting significant positive effects on the analytical response (soaking period, stirring rate, stirring time) were considered in a further central composite design to optimize the operational conditions for the solid phase microextraction procedure. Additionally, multiple response simultaneous optimization by using the desirability function was used to find the optimum experimental conditions for the on-line solid-phase microextraction of analytes in river water samples coupled to liquid chromatography and diode array detection. The best results were obtained using a soaking period of 5 min, stirring rate of 1400 rpm and stirring time of 44 min. The use of solid-phase microextraction technique avoided matrix effect and allowed to quantify the analytes in river water samples by using Milli-Q based calibration graphs. Recoveries ranging from 71.6% to 122.8% for all pharmaceuticals proved the accuracy of the proposed method in river water samples. Method detection limits were in the range of 0.5-3.0 microgL(-1) and limits of quantitation (LOQs) were between 1.0 and 4.0 microgL(-1) for pharmaceutical compounds in river water samples. The expanded uncertainty associated to the measurement of the concentration ranged between 8.5% and 29.0% for 20 microgL(-1) of each analyte and between 9.0% and 29.5% for the average of different concentration levels. The main source of uncertainty was the calibration step in both cases.  相似文献   

7.
Bond Elut C18 solid-phase extraction cartridges were used for preconcentration and pre-column derivatization with 3,5-dinitrobenzoyl chloride (DNB) of aliphatic amines in water. Conditions for analyte preconcentration and derivatization (including the volume of sample, concentration of reagent, time of reaction and pH) were investigated, using ethylamine, isopropylamine and dimethylamine as model compounds. On the basis of these studies, a rapid and sensitive method for the determination of aliphatic amines in water is presented. The analytes are retained and purified on the cartridges and then derivatized and desorbed by drawing in succession the DNB solution and acetonitrile. The collected extracts are subsequently chromatographed in a Hypersil ODS C18 column using acetonitrile-water for elution. The DNB derivatives are monitored at 230 nm. The method provides satisfactory reproducibility and linearity within the 0.050-1.0 mg l(-1) concentration interval, the limits of detection being 2-5 microg l(-1). Analyte recoveries were in the 70-102% range, whereas the conversion yields compared with those observed for the solution derivatization were in the 79-107% range. The total analysis time (sample treatment plus chromatography) was about 15 min. The method was applied to the determination of ethylamine, isopropylamine and dimethylamine in tap and river waters.  相似文献   

8.
Sahin Y  Ercan B  Sahin M 《Talanta》2008,75(2):369-375
A new method for the extraction of both anions and cations is proposed using electro-synthesized polypyrrole (PPy) and overoxidized sulfonated polypyrrole film (OSPPy). In situ anion (chloride, nitrate, sulfate) and cation (calcium, magnesium) uptake and release were examined under controlled potential conditions for prospective applications in electrochemically controlled solid-phase extraction (EC-SPE). The PPy film was used as an anode (anion-exchanger) and OSPPy film was used as a cathode (cation-exchanger) material and reverse order of the electrodes were investigated in EC-SPE. This new cell arrangement containing two ion exchanger polymer electrodes was developed to provide in situ removal of both anions and cations from aqueous solution. Simple preparation of the film coatings on a platinum plate was possible using a constant potential method. Applied positive and negative potentials facilitated the in situ extraction and desorption of ions, respectively. Both anions and cations were desorbed into sample aliquot and were determined by ion chromatography (IC). The method was validated using a standard reference material and tested for the determination of the ions in real water samples.  相似文献   

9.
Precolumn preconcentration and derivatization on solid sorbents (Bond Elut C18 solid-phase extraction cartridges) of low-molecular-mass aliphatic amines in water samples have been performed using dansyl chloride (Dns-Cl) as derivatization reagent. Conditions for analyte preconcentration and derivatization such as volume sample, reagent concentration, time, pH and temperature reaction were optimised. On the basis of these studies a rapid and sensitive method for screening of aliphatic amines in waters is presented. Up to volumes of 5 ml, samples are drawn through the sorbent, the analytes retained are dansylated at basic pH, at 100 degrees C for 10 min or 85 degrees C for 15 min. The derivatized analytes are desorbed with 0.5 ml of acetonitrile. Twenty microl of the collected extracts are chromatographed in a Hypersyl ODS C18 column using an acetonitrile-imidazole (pH 7) gradient for elution. Seven amines and ammonium were separated within 9 min. The Dns derivatives were monitored at 333 nm with UV detection and at lambda(excitation) = 350 nm and lambda(emission) = 530 nm with fluorescence detection. The different signals are compared. Dynamic ranges from 10 to 250 microg/l and limits of detection at the microgram-per-litre level and relative standard deviations from 2 to 15% were obtained for all the amines. The total analysis time (sample treatment plus chromatography) was less than 25 min. The method was applied to determination and screening analysis of these analytes in real environmental water samples.  相似文献   

10.
The use of two methods in tandem, single-sided membrane introduction mass spectrometry (SS-MIMS) and fiber introduction mass spectrometry (FIMS), is presented as a technique for field analysis. The combined SS-MIMS-FIMS technique was employed in both a modified commercial mass spectrometer and a miniature mass spectrometer for the selective preconcentration of the explosive simulant o-nitrotoluene (ONT) and the chemical warfare agent simulant, methyl salicylate (MeS), in air. A home-built FIMS inlet was fabricated to allow introduction of the solid-phase microextraction (SPME) fiber into the mass spectrometer chamber and subsequent desorption of the trapped compounds using resistive heating. The SS-MIMS preconcentration system was also home-built from commercial vacuum parts. Optimization experiments were done separately for each preconcentration system to achieve the best extraction conditions prior to use of the two techniques in combination. Improved limits of detection, in the low ppb range, were observed for the combination compared to FIMS alone, using several SS-MIMS preconcentration cycles. The SS-MIMS-FIMS response for both instruments was found to be linear over the range 50 to 800 ppb. Other parameters studied were absorption time profiles, effects of sample flow rate, desorption temperature, fiber background, memory effects, and membrane fatigue. This simple, sensitive, accurate, robust, selective, and rapid sample preconcentration and introduction technique shows promise for field analysis of low vapor pressure compounds, where analyte concentrations will be extremely low and the compounds are difficult to extract from a matrix like air.  相似文献   

11.
The cyclic voltammetric behavior of hydralazine and its primary metabolites, the pyruvate and acetone hydrazones, was examined in the positive potential range at both conventional and electrochemically pretreated glassy carbon electrodes. The enhanced oxidations observed at the treated surface were used as the basis of amperometric electrochemical detection of the compounds following reversed-phase liquid chromatography. The detection limits so obtained at +0.75 V vs. Ag/AgCl (1, 3, and 5 ng injected, respectively) were comparable to those previously reported for absorption and fluorescence detection approaches employing derivatization/preconcentration procedures. For liquid chromatography with electrochemical detection, however, direct quantitation of all three species in urine samples was readily accomplished without any chemical derivatization or sample treatment operations other than particulate filtration.  相似文献   

12.
A new method was developed for determination of methomyl in water samples by combining a dispersive liquid-liquid microextraction (DLLME) technique with HPLC-variable wavelength detection (VWD). In this extraction method, 0.50 mL of methanol (as dispersive solvent) containing 20.0 microL of tetrachloroethane (as extraction solvent) was rapidly injected by syringe into a 5.00-mL water sample containing the analyte, thereby forming a cloudy solution. After phase separation by centrifugation for 2 min at 4000 rpm, the enriched analyte in the settled phase (8 +/- 0.2 microL) was at the bottom of the conical test tube. A 5.0-microL volume of the settled phase was analyzed by HPLC-VWD. Parameters such as the nature and volume of the extraction solvent and the dispersive solvent, extraction time, and the salt concentration were optimized. Under the optimum conditions, the enrichment factor could reach 70.7 for a 5.00-mL water sample and the linear range, detection limit (S/N = 3), and precision (RSD, n = 6) were 3-5000 ng/mL, 1.0 ng/mL, and 2.6%, respectively. River and lake water samples were successfully analyzed by the proposed method. Comparison of this method with solid-phase extraction, solid-phase microextraction, and single-drop microextraction, indicates that DLLME combined with HPLC-VWD is a simple, fast, and low-cost method for the determination of methomyl, and thus has tremendous potential in trace analysis of methomyl in natural waters.  相似文献   

13.
We studied the possibility of hyper-cross-linked polystyrene application to the dynamic sorption preconcentration (solid-phase extraction) of methylxanthines (caffeine, theophylline, theobromine, diprophylline, and pentoxifylline) from aqueous solutions. The conditions of preconcentration were optimized as follows: solution volume of 25 mL (pH ~ 6), solution flow rate 0.7 mL/min, microcolumn size 25 × 2.7 mm, adsorbent weight 0.055 g. The compounds were desorbed into a 0.5-mL portion of methanol and determined in the eluate by reversed-phase HPLC with spectrophotometric detection at 280 nm. Sorption preconcentration provided more than 30-fold reduction of methylxanthine detection limits. The detection limits for methylxanthines are 1 (theophylline, theobromine), 2 (caffeine, diprophylline) and 4 (pentoxifylline) ng/mL. The procedure was applied to the analysis of urine-based model mixtures.  相似文献   

14.
A simple solid-phase microextraction (SPME) device, coupled with gas chromatography-flame ionization detection (GC-FID), was developed to detect trace levels of phthalates in environmental water samples. Polyaniline (PANI) was chosen as the sorbent for the SPME device and was electrochemically deposited on a stainless steel wire to achieve high thermal and mechanical stability. The porous structure of the PANI film, characterized by scanning electron microscopy (SEM), suggested large extraction capability. Key parameters were optimized and five phthalates were selected to evaluate the SPME-GC procedures. The method was also applied to the analysis of lake and river water samples. Control experiments were carried out using commercial polyacrylate (PA) fiber. The new PANI-SPME-GC method offers high accuracy, precision and sensitivity and low detection limits. Thus, the method developed could be used as a new way to monitor the trace levels of phthalates in water medium. A possible extraction mechanism was investigated using electrochemical impedance spectroscopy (EIS).  相似文献   

15.
微流控芯片停流液-液萃取技术的研究   总被引:1,自引:0,他引:1  
基于微流控芯片的液-液萃取技术的研究是目前微流控芯片分析领域内的重要研究方向之一,与传统液-液萃取系统相比,萃取系统微型化所带来的优势表现为显著降低试样与试剂的消耗(仅为传统系统的万分之一)、分析速度快、易实现操作自动化和分析系统集成化。目前,在已报道的基于微流  相似文献   

16.
本文以电化学活性的玫红酸钠修饰碳糊电极,利用玫红酸盐与钡离子的络合效应,实现钡离子的电化学固相微萃取。以循环伏安法研究了钡离子的固相微萃取及其最佳实验条件。固相微萃取的动力学符合S形曲线模型,获得表观一级反应速率常数为2.183 min-1。固相微萃取的热力学遵循Freundlich等温吸附模型,吸附常数为n=11.4,k=1.025。  相似文献   

17.
In the present study, graphene oxide reinforced two‐phase electromembrane extraction (EME) coupled with gas chromatography was applied for the determination of methamphetamine as a model analyte in biological samples. The presence of graphene oxide in the hollow fiber wall can increase the effective surface area, interactions with analyte and polarity of support liquid membrane that leads to an enhancement in the analyte migration. To investigate the influence of the presence of graphene oxide in the support liquid membrane on the extraction efficiency, a comparative study was performed between graphene oxide and graphene oxide/EME methods. The extraction parameters such as type of organic solvent, pH of the donor phase, stirring speed, time, voltage, salt addition and the concentration of graphene oxide were optimized. Under the optimum conditions, the proposed microextraction technique provided low limit of detection (2.4 ng/mL), high preconcentration factor (195–198) and high relative recovery (95–98.5%). Finally, the method was successfully employed for the determination of methamphetamine in urine and hair samples.  相似文献   

18.
The performance of a molecularly imprinted polymer (MIP) as a selective solid-phase extraction sorbent for the clean-up and preconcentration of the antibiotic chloramphenicol is described. The MIP was prepared using chloramphenicol as the template, (diethylamino)ethyl methacrylate as the functional monomer, and ethylene glycol dimethacrylate as the cross-linking monomer, and using tetrahydrofuran as the solvent. Detection of chloramphenicol was carried out by square-wave voltammetry at electrochemically activated carbon fiber microelectrodes. Chloramphenicol was eluted from the MIP microcolumn with methanol. Different experimental variables (sample pH, eluent volume, analyte and eluent flow rates and sample volume) associated with the rebinding/elution process were optimized. For a 250 mL sample, a nominal enrichment factor of 500 was attained, and for a chloramphenicol concentration of 3.0x10(-8) mol L(-1) (9.7 microg L(-1)) a recovery of 96+/-4% was obtained. A range of linearity for chloramphenicol between 3.0x10(-8) and 1.0x10(-5) mol L(-1) was obtained by loading 17 mL of analyte solutions of different concentration, eluting with 0.5 mL methanol, evaporating under a stream of nitrogen and dissolving the residue in phosphate buffer of pH 7.8. The MIP selectivity was evaluated by checking several substances with similar molecular structures to that of chloramphenicol. The applicability of the MIP for both clean up and preconcentration was demonstrated by determining chloramphenicol in ophthalmic solutions and spiked milk at different concentration levels.  相似文献   

19.
In this study, an electrochemically enhanced solid-phase microextraction (EE-SPME) approach based on molecularly imprinted polypyrrole/multi-walled carbon nanotubes (MIPPy/MWCNTs) composite coating on Pt wire was developed for selective extraction of fluoroquinolone antibiotics (FQs) in aqueous samples. During the extraction, a direct current potential was applied to the MIPPy/MWCNTs/Pt fiber as working electrode in a standard three-electrode system, FQ ions suffered electrophoretic transfer to the coating surface and then entered into the shape-complimentary cavities by hydrogen-bonding and ion-exchange interactions. After EE-SPME extraction, the fiber was desorbed with desorption solvent for high-performance liquid chromatography (HPLC) analysis. Some parameters influencing EE-SPME extraction such as applied potential, extraction time, solution pH, ionic strength, and desorption solvent were optimized. EE-SPME showed good selectivity and higher extraction efficiency to FQs compared with that of traditional solid-phase microextraction. EE-SPME coupled with HPLC to determine FQs in water samples, the limits of detection (S/N = 3) for the selected FQs are 0.5–1.9 μg L−1. The proposed method was successfully used to the analysis of FQs spiked urine and soil samples, with recoveries of 85.1–94.2% for the urine samples and 89.8–95.5% for the soil samples.  相似文献   

20.
A combination approach in solid-phase microextraction, based on a molecularly imprinted polymer-brush coating on an optical fiber coupled with a complementary molecularly imprinted polymer sensor, has been adopted for isolation, preconcentration, and analysis of dopamine at ultratrace levels in highly dilute aqueous samples. This combination enabled enhanced (up to 8.5-fold) preconcentration of the analyte, which is appropriate for achieving a stringent detection limit in clinical diagnosis of several neurodegenerative diseases. The detection limit of dopamine in biological samples was 0.018 ng mL?1 with a relative standard deviation less than 2.1% and without any non-specific contributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号