首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The transition from hadron phase to strange quark phase in dense matter is investigated. Instead of using the conventional bag model in quark sect, we achieve the confinement by a density-dependent quark mass derived from in-medium chiral condensates, with a thermodynamic problem improved. In nuclear slot, we adopt the equation of state from Brueckner-Bethe-Goldstone approach with three-body force. It is found that the mixed phase can occur, for reasonable confinement parameter, near the normal saturation density, and transit to pure quark matter at 4-5 times the saturation, which is quite different from the previous results from other quark models that pure quark phase can not appear at neutron-star densities.  相似文献   

2.
We study the phase diagram of two-flavor QCD at imaginary chemical potentials in the chiral limit. To this end we compute order parameters for chiral symmetry breaking and quark confinement. The interrelation of quark confinement and chiral symmetry breaking is analyzed with a new order parameter for the confinement phase transition. We show that it is directly related to both the quark density as well as the Polyakov loop expectation value. Our analytical and numerical results suggest a close relation between the chiral and the confinement phase transition.  相似文献   

3.
4.
We study phase transitions in the lattice version of the abelian Higgs model, a model which can exhibit both spontaneous symmetry breaking and confinement. When the Higgs charge is the basic U(1) unit, we find that the Higgs and confinement regions are not separated by a phase transition and form a single homogenous phase which we call the total screening phase. The model does not undergo a symmetry restoring phase transition at finite temperature.If the Higgs charge is some multiple of the basic unit the model follows the conventional wisdom: there are 3 phases (normal, Higgs and confinement) at zero temperature, two of which disappear above some critical point. We apply the lessons learned from the lattice Higgs model to understand the behavior of the weak interactions at high temperature.In a long appendix we give an intuitive physical picture for the Polyakov-Susskind quark liberating phase transition and show that it is related to the Hagedorn spectrum of a confining model. We end with a collection of effective field theory approximations to various lattice theories.  相似文献   

5.
6.
裘丛欣  徐仁新 《中国物理快报》2006,23(12):3205-3207
Colour confinement is only a supposition, which has not yet been proven in QCD. Here we propose that macroscopic quark-gluon plasma in astrophysics could hardly maintain colourless because of causality. It is expected that the existence of chromatic strange quark stars as well as chromatic strangelets preserved from the QCD phase transition in the early Universe could be unavoidable if their colourless correspondents do exist.  相似文献   

7.
Using an equation of state which is based on a many-body treatment of a constituent quark model with confinement interaction, the phase transition to a massive quark phase is studied. It is found that in the case of bag constantsB 1/4>200 MeV and baryon number density of about 5ρ0 a phase of massive deconfined quarks may become stable.  相似文献   

8.
In equilibrium statistical field theory, the partition function has fundamental importance. In this paper we propose a direct and general method for calculating the partition function and equation of state of QCD at finite chemical potential. It is found that the partition function is totally determined by the dressed quark propagator at finite chemical potential up to a multiplicative constant. From this a criterion for the phase transition between the Nambu and the Wigner phases is obtained. This general method is applied to two specific cases: the free quark theory and QCD with a model dressed quark propagator having confinement features. In the first case, the standard Fermi distribution at T = 0 is reproduced. In the second case, we apply the conclusion in previous works to obtain the dressed quark propagator at finite chemical potential and find the unphysical result that the baryon number density vanishes for all values of chemical potential. The reason for this result is discussed.  相似文献   

9.
《Physics letters. [Part B]》1988,200(3):343-347
We investigate the potentials between static quark clusters in various SU(3)-representations below and above the deconfinement phase transition. In the confinement regime we are able to resolve in addition to the triplet-antitriplet system the triplet-sextet, the sextet-antisextet, and the octet-octet interactions at small distances. We give an explanation of the general laws for the interaction of quark clusters which have been found earlier. In the deconfinement regime we study multiplet-multiplet systems up to decuplets with high resolution. The energies at zero and infinite distance are determined by the Casimir operators.  相似文献   

10.
The phase structure of hadronic matter at high density relevant to the physics of compact stars and relativistic heavy-ion collisions is studied in a low-energy effective quark theory. The relevant phases that figure are (1) chiral condensation, (2) diquark color condensation (color superconductivity) and (3) induced Lorentz-symmetry breaking (“ISB”). For a reasonable strength for the effective four-Fermi current–current interaction implied by the low-energy effective quark theory for systems with a Fermi surface we find that the “ISB” phase sets in together with chiral symmetry restoration (with the vanishing quark condensate) at a moderate density while color superconductivity associated with scalar diquark condensation is pushed up to an asymptotic density. Consequently, color superconductivity seems rather unlikely in heavy-ion collisions although it may play a role in compact stars. Lack of confinement in the model makes the result of this analysis only qualitative but the hierarchy of the transitions we find seems to be quite robust.  相似文献   

11.
Spontaneous and explicit chiral symmetry breaking is analyzed in Coulomb gauge QCD at finite temperatures, using an instantaneous approximation for the quark interaction and incorporating confinement through a running coupling constant. The thermodynamics of the quarks is treated approximatively by assuming that the momentum-dependent constituent quark mass sets the scale for thermodynamic fluctuations of colour singlet excitations. We investigate the class of a temperature independent and a temperature dependent interaction between quarks. In the chiral limit both temperature independent and a smooth temperature dependent interaction yields a second order chiral phase transition with critical exponents close to the values for a BCS super-conductor. For explicit chiral symmetry breaking we find a nearly constant pion mass below the transition temperature, but a strongly overdamped mode above. For a first order deconfining transition in the gluonic sector also the quark sector shows a first order chiral phase transition. The relevance of our results for relativistic heavy ion collisions is briefly discussed.  相似文献   

12.
Some recent theoretical developments of the QCD phase diagram are summarized. Chiral symmetry restoration and the confinement/deconfinement transition at nonzero temperature and quark densities are analyzed in the framework of an effective linear sigma model with three light quark flavors. The sensitivity of the chiral transition as well as the existence of a critical end point in the phase diagram on the value of the sigma mass is explored. The influence of the axial anomaly on the chiral critical surface is addressed. Finally, the modifications by the inclusion of the Polyakov loop on the phase structure are investigated.  相似文献   

13.
The infrared behavior of the quark-gluon vertex of quenched Landau gauge QCD is studied by analyzing its Dyson-Schwinger equation. Building on previously obtained results for Green functions in the Yang-Mills sector, we analytically derive the existence of power-law infrared singularities for this vertex. We establish that dynamical chiral symmetry breaking leads to the self-consistent generation of components of the quark-gluon vertex forbidden when chiral symmetry is forced to stay in the Wigner-Weyl mode. In the latter case the running strong coupling assumes an infrared fixed point. If chiral symmetry is broken, either dynamically or explicitly, the running coupling is infrared divergent. Based on a truncation for the quark-gluon vertex Dyson-Schwinger equation which respects the analytically determined infrared behavior, numerical results for the coupled system of the quark propagator and vertex Dyson-Schwinger equation are presented. The resulting quark mass function as well as the vertex function show only a very weak dependence on the current quark mass in the deep infrared. From this we infer by an analysis of the quark-quark scattering kernel a linearly rising quark potential with an almost mass independent string tension in the case of broken chiral symmetry. Enforcing chiral symmetry does lead to a Coulomb type potential. Therefore, we conclude that chiral symmetry breaking and confinement are closely related. Furthermore, we discuss aspects of confinement as the absence of long-range van der Waals forces and Casimir scaling. An examination of experimental data for quarkonia provides further evidence for the viability of the presented mechanism for quark confinement in the Landau gauge.  相似文献   

14.
We consider the 4-dimensionalq-state pure gauge Potts model. Forq large enough, we give a new proof of the existence of a unique coupling constant β t , where a first order phase transition occurs. Moreover we prove the following new results: The string tension is discontinuous at β t , the Wilson parameter exhibits at β t a direct transition from an area law decay (quark confinement) to a perimeter law decay (quark deconfinement).  相似文献   

15.
We scan the quark-antiquark potential and the meson-meson potential for static quarks in aSU 3 gluon field from strong coupling to weak coupling. The breakdown of the confinement between quark and antiquark at the phase transition is observed. There is no interaction between pointlike mesons in the whole coupling regime. It is pointed out that the interaction mechanism between two quark clusters can be classified by these two fundamental examples.  相似文献   

16.
In this paper we construct a lattice formulation of the pure gauge fields on a coset space in the cases of a group G with non-trivial topological property and of a chiral group G, and present a local gauge invariant action of a quark system on a four-dimensional Euclidean space lattice, which has the continuum limit as usual. For non-chiral group with trivial topological property, it is shown that the coset pure gauge fields have no influence on the confinement properties of the confinement properties of the quark system by calculating lattice current-current propagator when the coset pure gauge fields remain manifest.  相似文献   

17.
The large degeneracy observed in the excited meson spectrum by the Cristal Barrel Collaboration in the experimental data on proton–antiproton annihilation in flight into mesons in the range 1.9–2.4 GeV has been interpreted as a signal of chiral symmetry restoration. In this work we suggest that such degeneracy may be an indication of the confinement potential modification by color screening. The experimental data can be fairly well reproduced in a constituent quark model with a screened linear confinement potential without changing the dynamical quark mass. Observables that could discriminate our model from those which explicitly restore the chiral symmetry are proposed.  相似文献   

18.
19.
We propose to use a suitably defined vortex free energy as a disorder parameter in gauge field theories with matter fields. It is supposed to distinguish between the confinement phase, massless phase(s) and Higgs phase where they exist. The matter fields may transform according to an arbitrary representation of the gauge group. We compute the vortex free energy by series expansion for a Z2 Higgs model and for SU(2) lattice models with quark or Higgs fields in the fundamental representation at strong coupling (confinement phase), and for the Z2 Higgs model in the range of validity of low-temperature expansions (Higgs phase). The results are in agreement with the expected behavior.  相似文献   

20.
The possibility for existence of cold, dense chirally symmetric matter with confinement is reviewed. The answer to this question crucially depends on the mechanism of mass generation in QCD and interconnection of confinement and chiral symmetry breaking. This question can be clarified from spectroscopy of hadrons and their axial properties. Almost systematical parity doubling of highly excited hadrons suggests that their mass is not related to chiral symmetry breaking in the vacuum and is approximately chirally symmetric. Then there is a possibility for existence of confining but chirally symmetric matter. We clarify a possible mechanism underlying such a phase at low temperatures and large density. Namely, at large density the Pauli blocking prevents the gap equation to generate a solution with broken chiral symmetry. However, the chirally symmetric part of the quark Green function as well as all color non-singlet quantities are still infrared divergent, meaning that the system is with confinement. A possible phase transition to such a matter is most probably of the first order. This is because there are no chiral partners to the lowest lying hadrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号