首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Perovskites of composition La1?x Srx(Mn1?x/2Nb x/2)O3 and La0.49Sr0.51(Mn1?y Nby)O3 have been synthesized and investigated. The substitution of nonmagnetic niobium ions for manganese was shown to lead to a transition from the metallic into the insulating state due to a decrease in the number of dissimilar (different-valence) manganese atoms in the lattice. In spite of the high resistivity, the niobium-containing perovskites exhibit a large magnetoresistive effect and ferromagnetic ordering. Small additions of Nb5+ to La0.49Sr0.51MnO3 stimulate the transition from the antiferromagnetic into the ferromagnetic state, whereas the substitution of Mg2+ for Mn stabilizes the antiferromagnetic state. It is supposed that the ferromagnetism in the insulating perovskites at hand is due to the positive superexchange of the Mn3+-O-Mn3+ type, and the magnetoresistive effect owes to the intergranular transfer of spin-polarized charge carriers and the suppression of magnetic nonuniformities by an applied magnetic field near T C.  相似文献   

2.
We report electrochemical and x-ray diffraction studies of LixZrS2. lT-ZrS2 undergoes a reversible first order transition to the 3R polytype when intercalated with lithium. Co-existing 1T and 3R phases are observed for 0.01 ± 0.01 < x < 0.23 ± 0.01.  相似文献   

3.
4.
A new thiospinel CuIr2S4 exhibits a metal-insulator (M-I) transition at 226 K, while CuRh2S4 shows a superconducting transition at 4.70 K. We present a systematic study of electrical and magnetic properties of Cu(Ir1?x Rh x )2S4. TheM-I transition of CuIr2S4 is accompanied by a structural phase transition from tetragonal symmetry in insulating phase to cubic symmetry in high temperature metallic phase. With increasing Rh contentx, the sharpM-I transition shifts to lower temperature forx≦0.10. The samples show semiconductive behavior for 0.10≦0.30 between 4.2 and 300 K, and recover the metallic state forx≧0.50. The superconducting transition may occur for very close tox=1.00. Magnetic susceptibility shows the jump at theM-I transition temperature and the variation ofx leads to a systematic change of the magnetic susceptibilities, which is consistent with the electrical characteristic feature.  相似文献   

5.
The influence of composition on the structural ordering and magnetism in the VxNb1+yS2 system has been investigated by X-ray diffraction and magnetic measurements. Stoichiometric V1/3NbS2 did not exhibit the structural ordering of vanadium between the NbS2 layers. In the ordered structure, the vanadium composition deviated from the ideal value of to both higher and lower values, while the niobium composition was in the range of 0.05?y?0.18. Excess niobium, y>0, is thought to play an essential role in the structural ordering in this system. For samples with excess niobium and ordered structures, a magnetic transition was observed at 20-50 K, depending on the composition. The spontaneous magnetization of 3-5×10−3 μB/V atom is thought to be intrinsic to this system. The magnetization curves consisted of a constant and a proportional parts of the magnetic field, which correspond to the spontaneous magnetization and high-field susceptibility, respectively. The magnetization curves and the temperature dependencies of the high-field susceptibility were quite similar to those of the canted antiferromagnetic NiS2. A correlation between the structural and magnetic ordering is suggested.  相似文献   

6.
Recently ultrabroadband infrared solid state lasers based on a new vibronic material Cr2+:ZnSe x S1–x were demonstrated [1–3]. Cr2+ ion substitutes the metal ion (tetrahedral sites), the crystal field of the solid solution is responsible for large inhomogeneous broadening of Cr2+ electron states. The crystal field can be reconstructed by investigation of lattice dynamics — optical phonon parameters and dielectric function in IR. We paid special attention to investigation of vibrational and infrared spectroscopic properties of ZnSe x S1 ? x crystals. A very interesting and somewhat unexpected result of these studies was the existence in the crystals of effective S-Se dipoles, which generate an additional deep dynamically charged level in the forbidden gap of the semiconductors. The results of the first-principles calculations of both the phonon structure and the electron localization in ZnSe x S1–x crystals as well as acceptor levels in Cr2+: ZnSe crystal are discussed.  相似文献   

7.
8.
A normal thiospinel CuIr2S4 exhibits a temperature-induced metal-insulator (M-I) transition around 230 K with structural transformation, showing hysteresis on heating and cooling. On the other hand, CuCr2S4 has the same normal spinel structure without the structural transformation. CuCr2S4 has been found to be metallic and ferromagnetic with the Curie temperature Tc~377 K. In order to see the effect of substituting Cr for Ir on the M-I transition, we have carried out a systematic experimental study of electrical and magnetic properties of Cu(Ir1−xCrx)2S4. The M-I transition temperature shifts to lower temperature with increasing Cr-concentration x and this transition is not detected above x~0.05. The ferromagnetic transition temperature decreases as x is decreased and the transition does not occur below x~0.20.  相似文献   

9.
The X-ray photoelectron spectroscopy is applied for a chalcogen chromite system Fe1 ? xCuxCr2S4 to obtain microscopic information about valence states of the constituting atoms. The features of the Cu 2p spectra show that copper is always in a monovalent state in this system. This supports a model Fe3+1 ? xCu1+xCr3+2S1-2x ? 1S2-5 ? 2x for a compositional range 0.5 < x < 1.  相似文献   

10.
New substances CuVxCr1?x S2 are synthesized in which colossal magnetoresistance (T C = 95 K, δH = ?60%, H = 7 kOe), as well as the sequence of phase transitions with change in the conduction type and magnetic order, is observed as temperature is varied. The change found in the magnetic and electric properties of the CuVxCr1?x S2 compounds may be a consequence of a specific disintegration into Cu+Cr3+S2 and Cu2+Cr2+S2 and a change in the concentration relation between these electronic phases in the substance bulk.  相似文献   

11.
Electron spin resonance and optical absorption measurements are reported for Co2+ in structurally pure single crystals of cubic, hexagonal, and 4H polytype ZnS. Co2+ spectra corresponding to the four different cation sites expected for these structures were observed, i.e. a cubic center from zinc blende, an axial center from wurtzite, and two different axial centers from the 4H polytype host. The energy of the optical 4A2-4T2 transition and the spin Hamiltonian parameters show characteristic differences for these four centers, which are discussed.  相似文献   

12.
Dilution of the magnetic interactions between Cr3+ ions by Ti3+ ions was observed in the CrS2 layer of the misfit-layer compound ∼LaCrS3. Pure ∼LaCrS3 has complex magnetic properties which are reminiscent of spin glass behavior. This magnetic behavior comes from both the modulated character of the structure and the magnetic frustration of the planar-antiferromagnetic-triangular network of Cr3+ ions. Thus, there is a large hysteresis between the zero field cooled and the field cooled magnetic susceptibility curves below the transition temperature (≈75 K). Formation of a solid solution ∼LaCr1−xTixS3 by the addition of Ti3+ ions results in the decrease of transition temperature up to a doping level of x≈0.5, where the transition is no longer observed. The magnetic behavior of the phase with x≈0.5 is similar to that of several random exchange antiferromagnetic compounds.  相似文献   

13.
Ceramic samples of lanthanum strontium manganite perovskites La0.6Sr0.2Mn1.2 ? x Nb x O3 (x = 0–0.3) annealed at temperatures of 1260 and 1500°C have been investigated using the X-ray diffraction, electron microscopic, resistive, magnetoresistive, and magnetic (χac, 55Mn NMR) methods. It has been found that there is a correlation between the increasing unit cell parameter a of the rhombohedral R $\bar 3$ c structure and the average ionic radius with increasing niobium concentration x and annealing temperature for the case where the lattice contains anion vacancies, cation vacancies, and nanostructured clusters. The observed increase in the electrical resistivity and decrease in the temperatures of metal-semiconductor phase transition T ms and ferromagnetic-paramagnetic phase transition T C with an increase in the niobium concentration x and the annealing temperature have been explained by the decrease in the content of the ferromagnetic phase, as well as by changes in the ratio Mn3+/Mn4+, the oxygen nonstoichiometry, and the concentration of defects weakening the high-frequency electronic exchange of the ions Mn3+ ? Mn4+. The presence of nanostructured clusters in the lattice has been confirmed by an anomalous hysteresis associated with the unidirectional exchange anisotropy of the interaction between the ferromagnetic matrix and antiferromagnetic clusters with Mn2+ and Nb3+ in distorted A-positions. An analysis of the asymmetrically broadened 55Mn NMR spectra and their computer decomposition have revealed a high-frequency electronic exchange and an inhomogeneity of the magnetic and valence states of manganese due to the nonuniform distribution of all ions and defects. Two types of magnetoresistive effects have been found: one effect, which is observed near the phase transition temperatures T C and T ms, is caused by scattering at intracrystalline nanostructured heterogeneities of the imperfect perovskite structure, and the other effect, which is observed in the low-temperature range, is induced by tunneling through intercrystalline mesostructured boundaries. The phase diagram has demonstrated that there is a strong correlation between the composition, structure, resistive and magnetic properties of rare-earth manganites.  相似文献   

14.
In the manganites L1?xMxMnO3 (L = La, Nd, Pr, …; M = Sr, Ba, Ca, …), the doping concentration introduces a mixed valence (Mn3+, Mn4+) which governs the magnetic and electric properties of the compound. Mn3+ (S = 2) is scarcely observed in electron spin resonance (ESR). In contrast, Mn4+ (S = 3/2), is a good ESR probe. However, X-band measurements show an enhanced Mn4+ susceptibility, which is the signature of some kind of coupling of the Mn4+ ions with the Mn3+ ions, but its exact nature is still controversial. We present multifrequency ESR experiments (9–385 GHz) obtained on different systems (La1?δMnO3, La1?xMnO3, La1?xCaxMnO3, and Nd1?xCaxMnO3) in the low-concentration range (0 <x< 0.33). In the paramagnetic regime, the Mn3+ spectrum cannot be observed because of fast relaxation. The signal arises from polarons, whose size, temperature and magnetic field dependences vary with M andx. The single line observed in the metallic compound evolves towards a double-peak structure visible at high frequency in La0.97MnO3. Its evolution with temperature below the magnetic transition reveals the presence of manganese ions in a different magnetic environment, i.e., phase separation. The magnetic order of the separated phase is not ferromagnetic. It is a more complex order, which depends substantially on the nature of the cation M.  相似文献   

15.
The Seebeck coefficient for polycrystalline samples of: 1. Mn1-x Cu x Cr2S4 (0.0 ≤ x < 1.00) at 313 K and 2. MnCr2S4 between 313–393 K is presented. The electrical resistivity of Mn1-x Cu x Cr2S4 as a function of x at the room temperature is also presented. The n-p phase transition is observed in two cases: 1. on changing x at constant temperature (313 K) for 0.0 ≤ x ≤ 0.1 and 2. on changing temperature for MnCr2S4 at about 326 K. The first case is probably connected with the noncollinear ferromagnetic interaction of the chromium 3+ and 4+ ions. The second case follows from the strong ferrimagnetic interaction of the Mn2+ and Cr3+ ions in pure MnCr2S4.  相似文献   

16.
For the polycrystalline samples of Mn1?xCuxCr2S4 (x = 0.85, 0.90, 0.95) the magnetization was measured in the temperature range between 77 K and the Curie temperature, TC, using a magnetic balance (Faraday's method) and pulsed magnetic fields up to 2.0 T. The magnetic susceptibility was measured between TC and about 600 K. The Curie temperatures were obtained using the kink point method.In the temperature range between 4.2 and 77 K the magnetization was measured in stationary magnetic fields up to 14 T. The data indicate a noncollinear ferrimagnetic structure. The compounds under investigation can be treated as CuCr2S4 slightly doped with Mn, with a valence distribution Mn2+1?xCu1+xCr3+2?xCr4+xS2?4.  相似文献   

17.
The heat capacity of UP1?xSx (x = 0.0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0) has been measured from 80 to 670 K by laser-flash calorimetry. All samples exhibit an anomaly corresponding to the magnetic transition. The magnetic transition temperatures determined are in good agreement with literature values. UP0.4S0.6 shows an additional small peak at 86 K below Tc. It has been derived that the US-rich ferromagnetically ordered state should be divided into two phases in terms of the direction of the moments. Above 250 K, the heat capacities of all samples increase monotonically with temperature and are well represented in the form of Cp= 6R + AT ? BT?2. The conduction band structure has been derived from the high-temperature linear term and has been compared with that in literature. It has been suggested that the magnetically ordering behavior such as the direction of the moments would be closely correlated with the band structure.  相似文献   

18.
New LnxSb2−xS3 (Ln: Lu3+, Ho3+, Nd3+)-based nanomaterials were synthesized by a co-reduction method. Powder XRD patterns indicate that the LnxSb2−xS3 crystals (Ln=Lu3+, Ho3+, x=0.00−0.1 and Ln=Nd3+, x=0.00−0.08) are isostructural with Sb2S3. SEM images show that doping of Lu3+ and Ho3+ ions in the lattice of Sb2S3 results in nanorods while that in Nd3+ leads to nanoflowers. UV-vis absorption and emission spectroscopy reveal mainly electronic transitions of the Ln3+ ions in case of Ho3+ and Nd3+ doped nanomaterials. Emission spectra show intense transitions from excited to ground state of Ln3+. Emission spectra of doped materials, in addition to the characteristic red emission peaks of Sb2S3, show other emission bands originating from f-f transitions of the Ho3+ ions. TGA curves indicated that Sb2S3 has the highest thermal stability. The electrical conductance of Ln-doped Sb2S3 is higher than undoped Sb2S3, and increase with temperature.  相似文献   

19.
The Eu3+ ion occupies two different crystallographic sites in (Y1−xEux)2O3 and (Gd1−xEux)2O3, with site symmetry S6 and C2. Energy transfer over more than 7 Å occurs from Eu3+ (S6) ions to Eu3+ (C2) ions. This is shown to be a direct one-phonon assisted process, in combination with a one-site resonant two-phonon assisted process at higher temperatures. For x = 1 there is energy migration over the Eu3+ (C2) sublattice to quenching impurities. The presence of cooperative absorption points to superexchange interaction between the Eu3+ ions.  相似文献   

20.
In the rare-earth SmCoO3 perovskite, Co3+ ions at low temperatures appear to be in the low-spin state with S = 0, t 2g 2 e g 0 . If Ca2+ ions partially substitute Sm3+ ions, oxygen deficient Sm1 ? x Ca x CoO3 ? δ solid solutions with δ = x/2 appear. The oxygen deficiency leads to the formation of pyramidally coordinated cobalt ions Co pyr 3+ in addition to the existing cobalt ions Co oct 3+ within the oxygen octahedra. Even at low temperatures, these ions have a magnetic state, either S = 1, t 2g 5 e g 1 or S = 2, t 2g 4 e g 2 . At low temperatures, the magnetization of Sm1 ? x Ca x CoO3 ? δ is mainly determined by the response of Co pyr 3+ ions. Owing to the characteristic features of the crystal structure of the oxygen deficient perovskite, these ions form a set of nearly isolated dimers. At high temperatures, the magnetization of Sm1 ? x Ca x CoO3 ? δ is mainly determined by the response of Co oct 3+ ions, which exhibit a tendency to undergo the transition from the S = 0, t 2g 6 e g 0 state to the S = 1, t 2g 5 e g 1 or S = 2, tt 2g 4 e g 2 state. In addition, the magnetization and specific heat of the solid solutions under study include the contribution from the rare-earth subsystem, which undergoes a magnetic ordering at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号