首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
在MP2/ SMD/6-311++g(3df, 2pd)//WB97X-D/SMD/6-311++G(d, p)理论水平上,研究了水液相环境下羟自由基诱导的苯丙氨酸分子的损伤机理。研究发现,羟自由基(水分子簇)抽取α-氢、β-氢、苯环-氢以及羟自由基与苯环加成均可致苯丙氨酸分子损伤。势能面计算表明,羟自由基(水分子簇)抽取α-氢和β-氢的最低能垒分别为68.4和89.3 kJ·mol-1,羟自由基抽取苯环-氢的最低能垒为111.6 kJ·mol-1,羟自由基加成到苯环不同位点碳的能垒大约在106.5~110.2 kJ·mol-1,羟自由基(水分子簇)抽α-氢和β-氢是显著的放热反应。结果表明,羟自由基(水分子簇)抽取α-氢是苯丙氨酸分子损伤的主要途径。  相似文献   

2.
在MP2/ SMD/6-311++g(3df, 2pd)//WB97X-D/SMD/6-311++G(d, p)理论水平上,研究了水液相环境下羟自由基诱导的苯丙氨酸分子的损伤机理。研究发现,羟自由基(水分子簇)抽取α-氢、β-氢、苯环-氢以及羟自由基与苯环加成均可致苯丙氨酸分子损伤。势能面计算表明,羟自由基(水分子簇)抽取α-氢和β-氢的最低能垒分别为68.4和89.3 kJ·mol-1,羟自由基抽取苯环-氢的最低能垒为111.6 kJ·mol-1,羟自由基加成到苯环不同位点碳的能垒大约在106.5~110.2 kJ·mol-1,羟自由基(水分子簇)抽α-氢和β-氢是显著的放热反应。结果表明,羟自由基(水分子簇)抽取α-氢是苯丙氨酸分子损伤的主要途径。  相似文献   

3.
采用密度泛函理论M06-2X和MN15方法,结合自洽反应场理论的SMD模型方法,研究了水液相下羟基负离子(OH-)催化半胱氨酸(Cys)分子的旋光异构反应机理。研究发现,两性Cys分子的消旋反应可以通过OH-直接抽取α-H质子和Cys碳负离子抽取水分子(H2O)质子实现,也可以在两性Cys向中性异构后,通过OH-抽取中性Cys的α-H质子和Cys碳负离子抽取H2O质子实现。势能面计算表明:第1种情况下Cys消旋反应的活化能垒是45.8 k J/mol,第2种情况下Cys消旋反应的活化能垒是51.6 k J/mol,均比水液相下Cys消旋反应的活化能垒104.0 k J/mol低很多。结果表明,水液相下OH-对Cys的旋光异构具有很好的催化作用。  相似文献   

4.
采用密度泛函理论(DFT)的M06和MN15方法,结合极化连续介质的SMD模型方法,研究了水液相下α-丙氨酸(α-Ala)二价镍(α-Ala·Ni2+ )配合物的对映异构化机制。反应通道研究发现:α-Ala·Ni2+ 可以在以羰基O、氨基N和Ni作H质子迁移桥梁的3个通道实现。势能面计算表明:以氨基N作质子迁移桥梁的反应通道最具优势,反应的决速步能垒是92.6 kJ/mol。结果表明:水液相下α-Ala·Ni2+ 会缓慢地消旋,因此只能短期且少量地用于生命体同补α-丙氨酸和二价镍。  相似文献   

5.
采用密度泛函理论的明尼苏达泛函2006(M06)和明尼苏达泛函2015(MN15)方法,结合自洽场理论的溶质全电子密度溶剂化(solvation model based on desity,SMD)模型,研究了水液相下两性α-丙氨酸二价锰配合物(Mn(Ⅱ))的旋光异构。研究结果表明,S-Ala·Mn2+S-Mn(Ⅱ))可在a、b、c和d 4个通道旋光异构,a通道H以O为桥迁移,b通道H以O和N顺次为桥迁移,c通道H以N为桥迁移,d通道H以Mn(Ⅱ)为桥迁移。势能面计算结果表明,c通道最具优势,决速步能垒为220.8 kJ·mol-1;a和b通道同为亚优势通道,决速步能垒为254.8 kJ·mol-1;d通道为劣势通道,决速步能垒为293.3 kJ·mol-1。在水分子(簇)作用下,c通道决速步能垒降至155.1 kJ·mol-1;a和b通道决速步能垒降至165.8 kJ·mol-1;d通道仍为劣势通道,且S-A·Mn无法在该通道旋光异构。水液相下S-A·Mn很难消旋,Mn(Ⅱ)用于生命体补充二价锰和α-丙氨酸具有较好的安全性。  相似文献   

6.
采用密度泛函理论的M06和MN15方法,结合自洽反应场理论的SMD模型方法,研究了两性及中性α-丙氨酸(α-Ala_1和α-Ala_2)与Co2+配合物在水液相下的旋光异构。α-Ala_1·Co2+可在4个通道(a、b、c和d)实现旋光异构:a通道是质子以羧基底部的氧为桥迁移;b通道是α-氢迁移至羧基底部的氧后,质子在纸面内从氨基向α-碳迁移;c通道是质子以羧基上部的氧为桥迁移;d通道是α-氢迁移至羧基上部的氧后,质子在纸面内从氨基向α-碳迁移。α-Ala_2·Co2+的旋光异构有2个通道(a和b):a通道是其异构成α-Ala_1·Co2+后,再按α-Ala_1·Co2+异构的方式进一步异构;b通道是质子以羰基氧和甲基碳为桥迁移。势能面计算表明:α-Ala_1·Co2+在a和b通道的旋光异构具有优势,隐性溶剂效应下决速步能垒为283.1 kJ/mol,显性溶剂效应下该能垒降至120.3 kJ/mol;α-Ala_2·Co2+在a通道的...  相似文献   

7.
采用基于密度泛函理论的M06方法,研究了气相环境下2种稳定构型的丙氨酸(Ala)与Ca2+配合物的手性转变及水分子的催化。研究发现,Ala_1·Ca2+的手性转变有a和b 2个通道,a通道是α-氢只以羰基氧为桥迁移;b通道是α-氢迁移到羰基氧后,氨基上的质子在纸面内侧向α-碳迁移。Ala_2·Ca2+的手性转变有a、b、c、d 4个通道,a和b通道分别是羧基内质子迁移后,α-氢只以羰基氧为桥迁移和α-氢迁移到羰基氧接质子从氨基氮向α-碳迁移;c通道是钙与氮的配位键断裂后,α-氢向氨基氮迁移;d通道是钙与氮的配位键断裂后,Ala_2·Ca2+向Ala_1·Ca2+异构,再接Ala_1·Ca2+的手性转变。势能面计算表明,Ala_1·Ca2+手性转变的a通道具有优势,总包能垒为134.8 kJ·mol-1,Ala_2·Ca2+手性转变的d通道具有优势,总包能垒为235.3 kJ·mol-1;水分子的催化使能垒分别降至40.8和141.3 kJ·mol-1。结果表明,Ca2+对Ala的手性转变具有催化作用,水分子对丙氨酸Ca2+配合物的手性转变具有极好的催化作用。  相似文献   

8.
采用基于密度泛函理论的M06方法,研究了气相环境下2种稳定构型的丙氨酸(Ala)与Ca2+配合物的手性转变及水分子的催化。研究发现,Ala_1·Ca2+的手性转变有a和b 2个通道,a通道是α-氢只以羰基氧为桥迁移;b通道是α-氢迁移到羰基氧后,氨基上的质子在纸面内侧向α-碳迁移。Ala_2·Ca2+的手性转变有a、b、c、d 4个通道,a和b通道分别是羧基内质子迁移后,α-氢只以羰基氧为桥迁移和α-氢迁移到羰基氧接质子从氨基氮向α-碳迁移;c通道是钙与氮的配位键断裂后,α-氢向氨基氮迁移;d通道是钙与氮的配位键断裂后,Ala_2·Ca2+向Ala_1·Ca2+异构,再接Ala_1·Ca2+的手性转变。势能面计算表明,Ala_1·Ca2+手性转变的a通道具有优势,总包能垒为134.8 kJ·mol-1,Ala_2·Ca2+手性转变的d通道具有优势,总包能垒为235.3 kJ·mol-1;水分子的催化使能垒分别降至40.8和141.3 kJ·mol-1。结果表明,Ca2+对Ala的手性转变具有催化作用,水分子对丙氨酸Ca2+配合物的手性转变具有极好的催化作用。  相似文献   

9.
白藜芦醇是一种具有广泛抗氧化活性的多酚类天然化合物,能有效阻断自由基链式反应。为研究白藜芦醇及其相关衍生物的清除自由基的活性机理及性质,本实验设计7种白藜芦醇及其多羟基衍生物结构并构建分子模型,使用Gaussian 09软件通过密度泛函法DFT对7种分子进行量子化学计算。分析发现原子电荷分布图和前线分子轨道图能直观阐述白藜芦醇及其多羟基衍生物的活性基团;羟基位OH电荷差值和前线分子轨道π电子云密度能很好表征各羟基位活性顺序;根据前线分子轨道能级差△E及能隙Egap对照表征预测了白藜芦醇及其多羟基衍生物的活性大小以及各羟基位的活性顺序,其中各羟基的活性顺序4、4’位羟基>3、3’位羟基>5、5’位羟基,且4、4’位羟基位是主要的活性位点,其相应量化参数能作为推测分子抗氧化活性的主要指标。最终预测3,3’,4,4’,5,5’-六羟基反二苯代乙烯是7种白藜芦醇及其多羟基衍生物中抗氧化活性最高的分子结构。通过量子化学计算研究所得结果对高抗氧化活性的白藜芦醇相关衍生物结构的筛选和设计具有理论指导意义。 更多还原  相似文献   

10.
赖氨酸的S型和R型两种手性对映体有着不同的功能特性,本文基于密度泛函理论(DFT)的B3LYP/6-311++g(d,p)水平上的计算,对气相赖氨酸分子的手性转变过程进行研究.通过寻找反应过程中过渡态和中间体等极值点的结构,绘制了赖氨酸分子手性转变路径上完整的反应势能面.结果表明:赖氨酸分子完成从S型向R型的手性转变要经过5个过渡态和4个中间体.首先是实现氢原子在羧基内的转移,能垒为148.3kJ·mol-1;而后是手性碳上的氢原子迁移至羰基氧上,能垒为318.9kJ·mol-1,是整个反应过程的最大能垒;最后羰基的氢原子转移至手性碳原子的另一侧,实现S型到R型的手性转变.  相似文献   

11.
在MP2/SMD/6-311++G(3df,2pd)//ωB97X-D/SMD/6-311++G(d,p)双理论水平,研究了水液相环境下半胱氨酸(Cys)分子以氨基氮为质子转移桥梁的手性对映体转变及水分子簇的催化作用。反应历程研究发现,半胱氨酸分子经过6个基元反应实现了手性对映体转变。反应历程的势能面计算显示:半胱氨酸分子手性对映体转变反应的速控步骤是第2基元反应,速控步骤的内禀能垒为242. 7 kJ·mol-1;2个水分子簇的催化使速控步骤的内禀能垒降至104. 0 kJ·mol-1。结果表明,水环境下半胱氨酸分子可以实现手性对映体转变。  相似文献   

12.
多肽作为一种极具潜力的功能性食品基料,已经成为食品研究领域的热门之一。本文以大豆蛋白水解产物中的4种抗氧化肽为研究对象,采用半经验AM1和密度泛函理论(DFT)等量子化学计算方法对其清除自由基活性进行理论计算研究,通过计算原子电荷、分子总能量和供氢后的分子结构能量、能量最高占有轨道能(EHOMO)和最低空轨道能(ELUMO)等理论指标,分析了影响多肽清除自由基活性的因素,推断其作用机理。结果表明,通过计算所得理论数据预测的多肽清除自由基活性与实验测定的结果基本一致。更多还原  相似文献   

13.
采用密度泛函理论的B3LYP方法、微扰理论的MP2方法和自洽反应场(SCRF)理论的smd模型方法,研究了组氨酸分子3种最稳定构型的手性转变机理及水溶剂化效应.发现标题反应有a、b、c 3条通道,对于构型1和2,a是手性碳上的质子先以氨基为桥迁移,b是羟基异构后手性碳上的质子再以氨基为桥迁移,c是以羧基和氨基联合作桥实现质子迁移.对于构型3,a是质子只以氨基为桥迁移,b是质子顺次以羰基与氨基为桥迁移,c是质子顺次以羧基和氨基为桥迁移.计算表明:构型1和2的主反应通道都是b,决速步自由能垒分别为250.8和251.7 kJ·mol-1,来源于羟基异构后的质子从手性碳向氨基氮迁移的过渡态.构型3的主反应通道是a,决速步自由能垒为250.8 kJ·mol-1,来源于质子从手性碳向氨基氮迁移的过渡态.水溶剂效应使构型1的主反应通道决速步自由能垒降到109.1 kJ·mol-1.说明水环境对组氨酸的旋光异构有极好的催化作用.  相似文献   

14.
采用密度泛函理论的B3LYP方法、微扰理论的MP2方法和自洽反应场(SCRF)理论的SMD模型方法,研究了水环境下羧基与氨基间为单氢键的α-Ala旋光异构及羟自由基和氢氧根作用的反应。研究发现:α-Ala的旋光异构可在a和b两个通道实现,a通道为羧基顺反异构后,水分子簇作媒介质子以氨基为桥从α碳的一侧向另一侧迁移;b通道为水分子簇作媒介,质子从α碳向氨基氮的迁移与羧基顺反异构协同进行。在a通道,羟自由基水分子簇可致α-Ala损伤。势能面计算表明:水环境下,在a通道3个水分子簇作氢迁移媒介,决速步能垒为113.37 kJ·mol-1,氢氧根水分子簇的催化使该能垒降到64.45 kJ·mol-1;在b通道2个水分子簇作氢迁移媒介,决速步能垒为135.00 kJ·mol-1。羟自由基水分子簇致α-Ala损伤的能垒在水分子抽氢和羟自由基抽氢时分别为24.47和 80.60 kJ·mol-1。  相似文献   

15.
采用密度泛函理论的M06和MN15方法,结合自洽反应场理论的SMD模型方法,研究了水液相下两性α-丙氨酸与二价铁离子配合物(A·Fe)的构型反转.考察了 a、b、c和d共4个反应通道,分别是:α-氢质子以羰基O为桥迁移;α-氢质子迁移到羰基O后,H质子再从氨基N向α-碳迁移;α-氢质子以氨基N为桥迁移;氢负离子以二价铁...  相似文献   

16.
黄酮类化合物是一种具有广泛生物活性的多酚物质,其显著的抗氧化活性常被应用于食品保健和医疗等方面。为从化学反应活性层面研究黄酮类化合物的构效关系。以柚皮素、柚皮苷、橙皮素及橙皮苷4种黄酮类分子作为研究对象,使用量子化学密度泛函DFT方法 B3LYP和6-31g(d,p)基组计算得出4种分子的原子电荷分布情况、分子前线轨道分布(HOMO&LUMO)、能级差△E,以及各羟基位O-H键解离焓△BDE等理论参数,同时实测4种化合物对DPPH自由基的清除活性。结果表明,前线分子轨道能级差能有效的表征4种黄酮类清除自由能力的活性顺序,各羟基位O-H键解离焓BDE则能有效表征同一分子中各羟基位O-H的活性顺序,柚皮苷及其糖苷(柚皮素)与橙皮苷及其糖苷(橙皮素)抗氧化活性最大的位点分别为4’-OH、5’-OH基团。通过计算所得理论数据预测的黄酮类化合物清除自由基活性与实验测定结果一致,提示今后可利用理论计算方法对高活性的黄酮类化合物进行高通量筛选和分子结构设计。 更多还原  相似文献   

17.
在MP2/6-311++G(3df,2pd)//B3LYP/6-31+G(d,p)水平,采用自洽反应场(SCRF)理论的SMD模型研究了水液相环境下具有氨基和羧基间双氢键的α-丙氨酸(α-Ala)分子的旋光异构。研究发现:α-Ala的旋光异构有a、b和c三个反应通道,分别是质子以羰基氧、羧基及氨基为桥从手性碳的一侧迁移到另一侧。势能面计算结果显示:2个水分子簇的催化及溶剂效应的作用下,三个反应通道的决速步骤能垒分别为154.96、171.79和123.98kJ·mol~(-1),反应通道c为优势通道;3个水分子簇作氢迁移媒介时,反应通道c的决速步骤能垒降至109.61kJ·mol~(-1)。氢氧根水分子团簇的催化使该能垒降至61.83kJ·mol~(-1)。羟基自由基水分子簇致α-Ala损伤有水分子拔氢和羟基自由基拔氢两种机理,反应能垒分别为23.84、80.34kJ·mol~(-1)。结果表明:水液相环境下,α-Ala分子可缓慢地发生旋光异构,氢氧根水分子簇的催化可使α-Ala分子较快地旋光异构,羟基自由基水分子簇可使α-Ala分子迅速损伤。  相似文献   

18.
在M06/6-311++G(d,p)和MN15/6-311++G(2df,pd)双水平,研究了α-丙氨酸(α-Ala)与Cr3+的配合物S-α-Ala·Cr3+的手性反转,结合极化连续介质的SMD模型方法研究了水溶剂的作用。S-α-Ala·Cr3+的手性反转有3个通道:a通道是氨基N作质子转移媒介;b通道是羰基O和氨基N联合作质子转移媒介;c通道是羰基O作质子转移媒介。势能面研究表明:气相S-α-Ala·Cr3+在a、b、c通道手性反转的活化能分别是295.6、305.5、123.6 k J/mol;水液相S-α-Ala·Cr3+在a通道的活化能降至95.8 k J/mol,在b通道和c通道的活化能降至108.0 k J/mol。结果表明:气相α-Ala·Cr3+能缓慢消旋,因此光学纯的α-Ala·Cr3+不能在气固相下长期保存;水液相下α-Ala·Cr3+能缓慢消旋,α-Ala·Cr3+只...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号