首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-linear Oberbeck-electroconvection (OBEC) in a poorly electrically conducting fluid through a vertical channel, when the walls are held at different temperatures with temperature difference perpendicular to gravity, is studied using the modified Navier stokes equation in the presence of both induced and an applied electric field. Both analytical and numerical solutions for the non-linear coupled equations governing the motion are obtained and found that analytical solutions agree well with numerical solutions for values of the buoyancy parameter N<1. It is shown that OBEC can be controlled by maintaining the temperature difference either in the same direction or opposing the potential difference with a suitable value of electric number W. The effect of W on velocity, temperature, rate of heat transfer, skin friction and mass flow rate are computed and the results are depicted graphically. We found that analytical results agree well with numerical results for small values of N. We also found that an increase in W accelerates the flow and hence increases linearly the skin friction and mass flow rate.  相似文献   

2.
This paper documents the numerical investigation of the effects of non-uniform magnetic fields, i.e. magnetic-ribs, on a liquid–metal flowing through a two-dimensional channel. The magnetic ribs are physically represented by electric currents flowing underneath the channel walls. The Lorentz forces generated by the magnetic ribs alter the flow field and, as consequence, the convective heat transfer and wall shear stress. The dimensionless numbers characterizing a liquid–metal flow through a magnetic field are the Reynolds (Re) and the Stuart (N) numbers. The latter provides the ratio of the Lorentz forces and the inertial forces. A liquid–metal flow in a laminar regime has been simulated in the absence of a magnetic field (ReH = 1000, N = 0), and in two different magnetic ribs configurations for increasing values of the Stuart number (ReH = 1000, N equal to 0.5, 2 and 5). The analysis of the resulting velocity, temperature and force fields has revealed the heat transport phenomena governing these magneto-hydro-dynamic flows. Moreover, it has been noticed that, by increasing the strength of the magnetic field, the convective heat transfer increases with local Nusselt numbers that are as much 27.0% larger if compared to those evaluated in the absence of the magnetic field. Such a convective heat transfer enhancement has been obtained at expenses of the pressure drop, which increases more than twice with respect to the non-magnetic case.  相似文献   

3.
Heat and mass transfer along a semi-infinite vertical flat plate under the combined buoyancy force effects of thermal and species diffusion is investigated in the presence of a strong non-uniform magnetic field and the Hall currents are taken into account. The induced magnetic field due to the motion of the electrically conducting fluid is negligible. This assumption is valid for a small magnetic Reynolds number. The similarity solutions are obtained using the scale group of transformations. These are the only symmetry transformations admitted by the field equations. The non-linear boundary layer equations with the boundary conditions are transferred to a system of non-linear ordinary differential equations with the appropriate boundary conditions. Furthermore, the similarity equations are solved numerically by using a fourth order Runge-Kutta scheme with the shooting method. Numerical results for the velocity profiles, the temperature profiles and the concentration profiles are presented graphically for various values of the magnetic parameter M in the range of 0-1 with the Hall parameter m taking the values 0.5, 1, 2, and 3.  相似文献   

4.
A three-dimensional numerical simulation has been performed to study the growth of Ge0.98Si0.02 by the Traveling Solvent Method. We attempted to suppress the buoyancy convection, in the Ge0.98Si0.02 melt zone, by applying axial and rotating magnetic fields. The effects of the applied magnetic field intensity, on the transport structures in the melt (flow and concentration fields, heat and mass transfer), have been investigated in detail. The steady-state full Navier–Stokes equations, as well as energy, mass species transport and continuity equations are numerically solved using the finite element method. By applying an axial magnetic field of various intensities (2, 10, and 22 mT), we found that as the axial magnetic field increases, the silicon distribution nearby the growth interface becomes more uniform. In the case of a rotating magnetic field, with different applied rotational speeds (2, 7 and 10 rpm), we found that such kind of magnetic field has a marked effect on the silicon concentration, which changes its shape from a convex one to a nearly flat shape as the magnetic field intensity increases. An alternative method to reduce or suppress buoyancy convection, in the melt zone, is the growing of the sample in a microgravity environment, with a gravity level of at least 10?4 the earth normal gravity level; in this case the results revealed smooth and almost perfect straight concentration contours, due to the buoyancy convection weakness.  相似文献   

5.
A steady-state mixed convection boundary layer flow of an electrically conducting nanofluid (Cu–H2O) obeying a power-law model in the presence of an alternating magnetic field due to a stretching vertical heated sheet is investigated numerically through the use of Wolfram Mathematica. The surface stretching velocity and the surface temperature are assumed to vary as linear functions of the distance from the origin. A similarity solution is presented, which depends on the nanoparticle volume fraction, power-law parameter, magnetic field parameter, buoyancy convection parameter, and modified Prandtl number.  相似文献   

6.
A mathematical model for the flow and heat transfer in a gravity-driven liquid film is presented, in which the strict Boussinesq approximation is adopted to account for buoyancy. A similarity transformation reduces the governing equations to a coupled set of ordinary differential equations. The resulting two-parameter problem is solved numerically for Prandtl numbers ranging from 1 to 1000. Favourable buoyancy arises when the temperatureT w of the isothermal surface is lower than the temperatureT 0 of the incoming fluid, and the principal effects of the aiding buoyancy are to increase the wall shear and heat transfer rate. For unfavourable buoyancy (T w>T 0), the buoyancy force and gravity act in opposite directions and the flow in the film boundary layer decelerates, whereas the friction and heat transfer are reduced. The observed effects of buoyancy diminish appreciably for higher Prandtl numbers.  相似文献   

7.
The analysis of laminar mixed convection in boundary layers adjacent to a vertical, continuously stretching sheet has been presented. The velocity and temperature of the sheet were assumed to vary in a power-law form, that is, u w (x)=Bx m and T w (x)−T =Ax n . In the presence of buoyancy force effects, similarity solutions were reported for the following two cases: (a) n=0 and m=0.5, which corresponds to an isothermal sheet moving with a velocity of the form u w =Bx 0.5 and (b) n=1 and m=1, which corresponds to a continuous, linearly stretching sheet with a linear surface temperature distribution, i.e. T w T =Ax. Formulation of the present problem shows that the heat transfer characteristics depends on four governing parameters, namely, the velocity exponent parameter m, the temperature exponent parameter n, the buoyancy force parameter G *, and Prandtl number of the fluid. Numerical solutions were generated from a finite difference method. Results for the local Nusselt number, the local friction coefficient, and temperature profiles are presented for different governing parameters. Effects of buoyancy force and Prandtl number on the flow and heat transfer characteristics are thoroughly examined. Received on 17 July 1997  相似文献   

8.
The motion of single Argon bubbles rising in the eutectic alloy GaInSn under the influence of a DC longitudinal magnetic field (parallel to the direction of bubble motion) was examined. The magnetic field strength was varied up to 0.3 T corresponding to a magnetic interaction parameter N (which measures the ratio of electromagnetic forces to inertial forces) slightly greater than 1. The liquid metal was at rest in a cylindrical container. Bubble and liquid velocities were measured using ultrasound Doppler velocimetry (UDV). The measured bubble terminal velocity showed oscillations indicating a zigzag movement of ellipsoidal bubbles. For small bubbles (de  4.6 mm) an increase of the drag coefficient with increasing magnetic interaction parameter N was observed, whereas for larger bubbles (de  5.4 mm) the application of the magnetic field reduces the drag coefficient. The measurements revealed a distinct electromagnetic damping of the bubble induced liquid velocity leading to more rectilinear bubble trajectories when the magnetic field is applied. Moreover, significant modifications of the bubble wake structure were observed. Raising of the magnetic field strength caused an enlargement of the eddies in the wake. The Strouhal number decreases with increasing magnetic interaction parameter N.  相似文献   

9.
The turbulent film boiling from a vertical non-isothermal surface is formulated with due consideration to thermal radiation from its lateral face. It is observed that the application of Reynolds analogy together with thermal conduction in the test surface has yielded a conjugate solution from which the case of an isothermal condition can be generated as a special case. The analysis has further paved the way in establishing a functional relation between the Nusselt numberNu, radiation parameterN R , fin parameterM, temperature ratio termT s /(T w,0?T s ), and a product of characteristic modified Grashof, Prandtl and superheating parameter defined as (Gr 2 Pr S). In a fully developed turbulent film boiling i.e., modified Grashof number being greater than 1010, the temperature ratio term accounts for the non-linearities arising due to the inclusion of radiation from the lateral face of the fin. The results are in good agreement with experimental data over a wide range of system conditions.  相似文献   

10.
An analysis is presented to investigate the effect of radiation on mixed convection from a horizontal flat plate in a saturated porous medium. Both a hot surface facing upward and a cold surface facing downward are considered in the analysis. The conservation equations that govern the problem are reduced to a system of nonlinear ordinary different equations. The important parameters of this problem are the radiation parameter R, the buoyancy parameter B, and the freestream to wall temperature ratio T /T w for the case of a hot surface or the wall to freestream to wall temperature T w /T for the case of a cold surface.  相似文献   

11.
Across traveling autocatalytic fronts, density differences due to composition and temperature changes can lead to buoyancy-driven hydrodynamic instabilities deforming the front by convective motions. We study here the influence of heat losses through the walls of the reactor on the stability of such exothermic fronts in the gravity field. The stability domain is computed numerically in a parameter space spanned by the solutal Rc and thermal RT Rayleigh numbers of the problem for various values of the Newton's coefficient α quantifying the intensity of heat losses.  相似文献   

12.
The paper investigates the effect of radiation on Darcy's buoyancy induced flow of an optically dense viscous incompressible fluid along a heated inclined flat surface maintained at uniform temperature placed in a saturated porous medium with Rosseland diffusion approximation employing the implicit finite difference method together with Keller box elimination technique. Both the streamwise and normal components of the buoyancy force are retained in the momentum equations. The numerical results show that as the buoyancy parameter, ξ, increases the local Nusselt number increases. The results for the locally nonsimilar solutions are compared with the locally similar solutions for small angle of inclination and approximate similar solutions along vertical surface. The effect of the conduction-radiation parameter, R d , and the surface temperature excess ration, θ w , on the local Nusselt number, the tangential velocity distribution and the temperature distribution are also shown graphically.  相似文献   

13.
IntroductionInthepresentpaper,acomputationalstudyoftheeffectofmagneticfieldonlowfrequencyoscillatingnaturalconvectionwithpressuregradientiscarriedout.Therehasbeenarecentinterestinexploringthemagneticdampingeffectstosuperimposeovermicrogravityforafurth…  相似文献   

14.
The flow and heat transfer characteristics of Oberbeck convection of a couple stress fluid in a vertical porous stratum is investigated. The perturbation method of solution is obtained in terms of buoyancy parameter N valid for small values of N. This limitation is relaxed through numerical solutions using the finite difference technique with an error of 0.1×10-7. The effect of increase in the values of temperature difference between the plates, permeability parameter and couple stress parameter on velocity, temperature, mass flow rate, skin friction and rate of heat transfer are reported. A new achievement is explored to analyse the flow for strong, weak and comparable porosity with the couple stress parameter. It is noted that both the porous parameter and the couple stress parameter suppress the flow. Higher-temperature difference is required to achieve the mass flow rate equivalent to that of viscous flow.  相似文献   

15.
The velocity distribution between two sidewalls is M-shaped for the MHD channel, flows with rectangular cross section and thin conducting walls in a strong transverse magnetic field. Assume that the dimensionless numbersR m ?1,M, N? 1, and σ* and that the distance between two perpendicular walls is very long in comparison with the distance between two sidewalls. First, the equation for steady flow is established, and the solution of M-shaped velocity distribution is given. Then, an equation for stability of small disturbances is derived based on the velocity distribution obtained. Finally, it is proved that the stability equation for sidewall flow can be transformed into the famous Orr-Sommerfeld equation, in addition, the following theorems are also proved, namely, the analogy theorem, the generalized Rayleigh's theorem, the generalized Fjørtoft's theorem and the generalized Joseph's theorems.  相似文献   

16.
This paper presents a numerical investigation for the conditions at which the buoyancy effects (represented by the buoyancy parameter (Gr/Re)) result in pressure build-up due to mixed convection in vertical eccentric annuli under thermal boundary conditions of first kind. In this regard, the critical values of buoyancy parameter (Gr/Re)crt at which the pressure gradient vanishes and starts to become positive leading to the pressure build-up are obtained numerically for radius ratio N=0.5 and eccentricity E=0.1–0.7. Results of practical applications such as the locations at which the negative pressure gradient becomes zero changing its sign to be positive, the locations of zero pressure defect and the fully developed length under different operating conditions are drawn and presented. For sufficiently large values of Gr/Re≫(Gr/Re)crt, possibilities and locations of flow reversal incipient are determined. Information of technical relevance is presented.  相似文献   

17.
A similarity solution for a steady laminar mixed convection boundary layer flow of a nanofluid near the stagnation point on a vertical permeable plate with a magnetic field and a buoyancy force is obtained by solving a system of nonlinear ordinary differential equations. These equations are solved analytically by using a new kind of a powerful analytic technique for nonlinear problems, namely, the homotopy analysis method (HAM). Three different types of nanoparticles, namely, copper (Cu), alumina (Al2O3), and titanium oxide (TiO2), with water as the base fluid are considered. The influence of the volume fraction of nanoparticles, permeability parameter, magnetic parameter, and mixed convection parameter on the surface shear stress and surface heat transfer, as well as on the velocity and temperature profiles, is considered. It is observed that the skin friction coefficient and the local Nusselt number increase with the nanoparticle volume fraction for all types of nanoparticles considered in this study. The greatest values of the skin friction coefficient and the local Nusselt number are obtained for Cu nanoparticles.  相似文献   

18.
《力学快报》2022,12(4):100356
In this research, a vertical channel containing a laminar and fully developed nanofluid flow is investigated. The channel surface's boundary conditions for temperature and volume fraction functions are considered qth-order polynomials. The equations related to this problem have been extracted and then solved by the AGM and validated through the Runge-Kutta numerical method and another similar study. In the study, the effect of parameters, including Grashof number, Brownian motion parameter, etc., on the motion, velocity, temperature, and volume fraction of nanofluids have been analyzed. The results demonstrate that increasing the Gr number by 100% will increase the velocity profile function by 78% and decrease the temperature and fraction profiles by 20.87% and 120.75%. Moreover, rising the Brownian motion parameter in five different sizes (0.1, 0.2, 0.3, 0.4, and 0.5) causes lesser velocity, about 24.3% at first and 4.35% at the last level, and a maximum 52.86% increase for temperature and a 24.32% rise for Ψ occurs when Nb rises from 0.1 to 0.2. For all Nt values, at least 55.44%, 18.69%, for F(η), and Ω(η), and 20.23% rise for Ψ(η) function is observed. Furthermore, enlarging the Nr parameter from 0.25 to 0.1 leads F(η) to rise by 199.7%, fluid dimensionless temperature, and dimensional volume fraction to decrease by 18% and 92.3%. In the end, a greater value of q means a more powerful energy source, amplifying all velocity, temperature, and volume fraction functions. The main novelty of this research is the combined convection qth-order polynomials boundary condition applied to the channel walls. Moreover, The AMG semi-analytical method is used as a novel method to solve the governing equations.  相似文献   

19.
The triple-diffusive convection in a micropolar ferromagnetic fluid layer heated and soluted from below is considered in the presence of a transverse uniform magnetic field. An exact solution is obtained for a flat fluid layer contained between two free boundaries. A linear stability analysis and a normal mode analysis method are carried out to study the onset convection. For stationary convection, various parameters such as the medium permeability, the solute gradients, the non-buoyancy magnetization, and the micropolar parameters (i.e., the coupling parameter, the spin diffusion parameter, and the micropolar heat conduction parameter) are analyzed. The critical magnetic thermal Rayleigh number for the onset of instability is determined numerically for a sufficiently large value of the buoyancy magnetization parameter M 1. The principle of exchange of stabilities is found to be true for the micropolar fluid heated from below in the absence of the micropolar viscous effect, the microinertia, and the solute gradients. The micropolar viscous effect, the microinertia, and the solute gradient introduce oscillatory modes, which are non-existent in their absence. Sufficient conditions for the non-existence of overstability are also obtained.  相似文献   

20.
Picosecond Unstable-resonator Spatially Enhanced Detection Coherent Anti-Stokes Raman Scattering (USED-CARS) is used for the measurement of nitrogen Q-branch (ΔJ = 0) spectra in the subsonic plenum and supersonic flow of a highly nonequilibrium Mach 5 wind tunnel. Spectra are processed to infer rotational/translational (T rot) and first-level vibrational (T vib) temperatures in the 200–370 torr plenum simultaneously. Operation of the nominally high reduced electric field (E/n peak ~ 500 Td), nsec pulsed discharge alone results in fairly significant vibrational loading, T vib ~ 720 K/T rot ~ 380 K; addition of an orthogonal low E/n (~10 Td) DC sustainer discharge produces substantial vibrational loading, T vib ~ 2,000 K/T rot ~ 450 K. Effects of injection of CO2, NO, and H2 downstream of the pulser–sustainer discharge are examined, which result in vibrational relaxation accompanied by simultaneous gas heating, T vib ~ 800–1,000 K/T rot ~ 600 K. CARSk measurements within very low-density flows in the Mach 5 expansion nozzle are also performed, with T vib measured in both the supersonic free-stream and downstream of a bow shock created by a 5-mm-diameter cylindrical test object in the Mach 5 flow. Measurements within 300 μm of the cylinder leading edge show that for pure N2, or N2 with 0.25 torr CO2 injection, no vibrational relaxation is observed behind the bow shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号