首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thermodynamic analysis of carbon nucleation on a metal surface is carried out. The fundamental equation is obtained that relates the critical radius of a nucleus and reaction parameters, such as temperature, metal particle oversaturation by carbon, the work of metal adhesion to graphite, and the metal–carbon bond energy. The results are compared with experimental data and conditions for the formation of carbon deposits of various kinds on metal particles are analyzed. A new mechanism for the formation of carbon nanotubes with a bamboo structure is proposed. This mechanism is based on a periodical change in the degree of metal particle oversaturation by carbon. The optimal conditions for the synthesis of single-wall nanotubes are formulated.  相似文献   

2.
Magnesium iron hydrosilicate nanotubes with a chrysotile ((Mg,Fe)3Si2O5(OH)4) structure have been synthesized hydrothermally at t = 250–450°C and p = 30–100 MPa. In the hydrothermal synthesis of (Mg,Fe)3Si2O5(OH)4 chrysotile, part of the Fe2+ ions oxidize to Fe3+ and are incorporated into the octahedron and tetrahedron layers of the chrysotile structure. The limiting iron content of chrysotile has been determined up to which cylindrically rolled layers can form to yield nanotubes. The hydrothermal treatment of precursors richer in FeO yields platelike hydrosilicates. The iron ions present in the starting components affect the synthesis parameters, morphology, size, optical properties, and thermal stability of the nanotubes.  相似文献   

3.
Nanotubes are important "building block" materials for nanotechnology, but a synthesis process for short (sub-100-nm) solid-state nanotubes with structural order and monodisperse diameter has remained elusive. To achieve this goal, it is critical to possess a definitive mechanistic framework for control over nanotube dimensions and structure. Here we employ solution-phase and solid-state characterization tools to elucidate such a mechanism, particularly that governing the formation of short ( approximately 20 nm), ordered, monodisperse (3.3 nm diameter), aluminum-germanium-hydroxide ("aluminogermanate") nanotubes in aqueous solution. Dynamic light scattering (DLS), vibrational spectroscopy, and electron microscopy show that pH-control of chemical speciation in the aluminogermanate precursor solution is important for producing nanotubes. A combination of DLS, UV-vis spectroscopy, and synthesis variations is then used to study the nanotube growth process as a function of temperature and time, revealing the initial condensation of amorphous nanoparticles of size approximately 6 nm and their transformation into ordered aluminogermanate nanotubes. The main kinetic trends in the experimental data can be well reproduced by a two-step mathematical model. From these investigations, the central phenomena underlying the mechanism are enumerated as: (1) the generation (via pH control) of a precursor solution containing aluminate and germanate precursors chemically bonded to each other, (2) the formation of amorphous nanoscale ( approximately 6 nm) condensates via temperature control, and (3) the self-assembly of short nanotubes from the amorphous nanoscale condensates. This mechanism provides a model for controlled low-temperature (<373 K) assembly of short, monodisperse, structurally ordered nanotube objects.  相似文献   

4.
We describe the facile two-step synthesis of nanotubes that form pure, well-defined, nanostructured materials. We have synthesized a secondary amine HBr salt as the headgroup of a single-chain diacetylenic lipid. This molecule can form a number of different self-assembled nanostructures in aqueous or organic solvents. In water, this lipid forms a monodisperse preparation of nanotubes at high yields. Partially dissolving a preparation of nanotubes dried from aqueous solution results in a remarkably organized structure that resembles a nanocarpet. Details of the nanotube structure were investigated by scanning electron microscopy, transmission electron microscopy, and small-angle X-ray spectroscopy. The aqueous nanotubes have a cross-sectional diameter of 89 nm. The walls of the tubes are an exquisitely uniform 27 nm thick and are shown to consist of five lipid bilayers with a repeat spacing of 57.8 A. The chemical structure of the material shows no chiral centers, but suspensions of the nanotubes in an aqueous medium show an unexpected circular dichroism signal. The versatility of this new material as a platform for nanostructure design and synthesis is enhanced by its biocidal activity. This antimicrobial activity along with the regularity the nanostructures will enhance the development of a range of applications from biosensors to artificial retinas.  相似文献   

5.
用电弧法制备出纳米管及纳米管束,并用高分辨电镜观察其结构.观察到的纳米管管子中空,管壁平行,间距0.34nm,端部封闭;还观察到单层纳米管,洋葱球以及内包晶核的洋葱球结构,纳米管束微结构为纳米管.用扫描电镜观察,为明显的针状晶须,定向排列,晶须互相平行,平行于电场方向生长,晶须直径0.2~0.6mm,长度3~8mm.生成纳米管束的原因可能是由于掺杂碳棒中的杂质提供了晶须生长的晶核.  相似文献   

6.
Enzyme‐loaded magnetic polyelectrolyte multilayer nanotubes prepared by layer‐by‐layer assembly combined with the porous template could be used as biomimetic nanoreactors. It is demonstrated that calcium carbonate can be biomimetically synthesized inside the cavities of the polyelectrolyte nanotubes by the catalysis of urease, and the size of the calcium carbonate precipitates was controlled by the cavity dimensions. The metastable structure of the calcium carbonate precipitates inside the nanotubes was protected by the outer shell of the polyelectrolyte multilayers. These features may allow polyelectrolyte nanotubes to be applied in the fields of nanomaterials synthesis, controlled release, and drug delivery.

  相似文献   


7.
The properties of Fe/Co nanotubes, which were fabricated by the method of electrochemical template synthesis, are studied. It is shown that the atomic ratio between the metals in the nanotubes shifts in the direction of cobalt with increasing potential difference during their synthesis; the geometric parameters of nanotubes, in particular, the wall thickness, also vary. Using the X-ray diffraction analysis, it was found that an increase in the concentration of cobalt in the crystal structure of nanotubes leads to a decrease in the interplanar distance and an increase in the conductivity.  相似文献   

8.
Four types of BN nanotubes are selectively synthesized by annealing porous precursor in flowing NH3 and NH3/H2 atmosphere at temperature ranging from 1000 to 1200 °C in a vertical furnace. The as-synthesized BN nanotubes, including cylinder, wave-like, bamboo-like and bubble-chain, are characterized by XRD, FTIR, Raman, SEM, TEM and HRTEM. Three phenomenological growth models are proposed to interpret growth scenario and structure features of the four types of BN nanotubes. Selectivity of nanotubes formation is estimated as approximately 80-95%. The precursor containing B, Mg, Fe and O prepared by self-propagation high-temperature synthesis (SHS) method plays a key role in selective synthesis of the as-synthesized BN nanotubes. Chemical reactions are also discussed.  相似文献   

9.
以介孔分子筛为金属催化剂载体制备纳米碳管   总被引:2,自引:0,他引:2  
 以不同的介孔分子筛作为金属催化剂载体,对催化合成纳米碳管进行了系统的研究,讨论了反应条件对纳米碳管纯度和产量的影响. 结果表明,不同的介孔分子筛对金属活性中心的形成、碳组分的扩散、纳米碳管的管径及形态均有明显的影响. 此外,金属的种类、状态和含量也影响纳米碳管的合成. 探索了合成高产量纳米碳管的条件,并对介孔分子筛上生长纳米碳管的特点进行了讨论.  相似文献   

10.
综述了碳纳米管的结构、合成、纯化、功能化、分散及基于碳纳米管的化学修饰电极和电化学生物传感器的研究进展。  相似文献   

11.
Raman spectroscopy is a powerful technique that is used to characterize or observe alterations in the structure or properties of carbon nanotubes and its composites. This method can provide information about electronic changes or quantify them. We used Raman spectroscopy to study the chemical and electronic changes in a composite formed by titanium dioxide nanoparticles and single-walled carbon nanotubes. This composite was characterized by scanning electron microscopy to investigate the morphology and by thermogravimetric analyses to assess the thermal stability of the isolated carbon nanotubes as compared with the nanotubes by titanium dioxide nanoparticles. The Raman results showed that the modification of the nanotubes with the TiO2 nanoparticles generates a new material with different structure of the nanotubes, resulting in a decrease in defects. The charge transfer from the TiO2 nanoparticles to the nanotubes alters the electronic properties of both moieties in the hybrid material. The interaction between the nanotubes and nanoparticles decreases the CC bound order of the nanotubes and decreases their thermal stability.  相似文献   

12.
In the course of synthesis of nanotubes, atoms of transition metals used as a catalyst can be substituted for carbon atoms. The electronic properties of semiconducting (13,0) and metallic (5,5) nanotubes doped with Co and Ni atoms have been calculated by ab initio quantum-chemical methods. The total and partial densities of states have been determined. The conclusion has been made that Co and Ni substituted for carbon disturb the electronic structure of metallic and semiconducting nanotubes. Such dopants can be detected by spectral and electrical measurements.  相似文献   

13.
We have demonstrated a facile approach for the low‐temperature synthesis of crystalline inorganic/metallic nanocrystal‐halloysite composite nanotubes by employing the bulk controlled synthesis of inorganic/metallic nanocrystals on halloysite nanotubes. The halloysite clay nanotubes can adsorb the target precursor and induce inorganic/metallic nanocrystals to grow in situ. The crystalline phase and morphology of the composite clay nanotubes is tunable. By simply tuning the acidity of the titania sol, the crystalline titania‐clay nanotubes with tunable crystalline phases of anatase, a mixture of anatase and rutile or rutile are achieved. The approach is general and has been extended to synthesize the representative perovskite oxide (barium and strontium titanate)‐halloysite composite nanotubes. Metallic nickel nanocrystal can also be grown on the surface of halloysite nanotubes at low temperature. The traditional thermal treatment for crystallite transformation is not required, thus intact contour of halloysite nanotubes and the crystallinity structure of halloysite nanotubes can be guaranteed. The combined properties from inorganic/metallic nanocrystal (high refractive index, high dielectric constant and catalytic ability) and the halloysite clay nanotubes are promising for applications such as photonic crystals, high‐k‐gate dielectrics, photocatalysis and purification.  相似文献   

14.
Selective synthesis of single walled carbon nanotubes (SWCNTs) with specific (n,m) structures is desired for many potential applications. Current chirality control growth has only achieved at small diameter (6,5) and (7,5) nanotubes. Each (n,m) species is a distinct molecule with structure-dependent properties; therefore it is essential to extend chirality control to various (n,m) species. In this communication, we demonstrate the highly selective synthesis of (9,8) nanotubes on a cobalt incorporated TUD-1 catalyst are (Co-TUD-1). When catalysts were prereduced in H(2) at the optimized temperature of 500 °C, 59.1% of semiconducting nanotubes have the (9,8) structure. The uniqueness of Co-TUD-1 relies on its low reduction temperature (483 °C), large surface area, and strong metal-support interaction, which stabilizes Co clusters responsible for the growth of (9,8) nanotubes. SWCNT thin film field effect transistors fabricated using (9,8) nanotubes from our synthesis process have higher average device mobility and a higher fraction of semiconducting devices than those using (6,5) nanotubes. Combining with further postsynthetic sorting techniques, our selective synthesis method brings us closer to the ultimate goal of producing (n,m) specific nanotube materials.  相似文献   

15.
二氧化钛纳米管由于其新奇的光电、催化、气敏等性能引起了广泛的关注,在太阳能电池、光催化、环境净化、气体传感器等领域有潜在的应用价值.本文概述了近年来在制备方法、反应机理和组成、晶型和形貌及掺杂和应用方面的进展,并讨论了今后可能的研究发展方向.  相似文献   

16.
It is known that silicon can be successfully replaced by germanium atoms in the synthesis of imogolite nanotubes, leading to shorter and larger AlGe nanotubes. Beside the change in morphology, two characteristics of the AlGe nanotube synthesis were recently discovered. AlGe imogolite nanotubes can be synthesized at much higher concentrations than AlSi imogolite. AlGe imogolite exists in the form of both single-walled (SW) and double-walled (DW) nanotubes, whereas DW AlSi imogolites have never been observed. In this article, we give details on the physicochemical control over the SW or DW AlGe imogolite structure. For some conditions, an almost 100% yield of SW or DW nanotubes is demonstrated. We propose a model for the formation of SW or DW AlGe imogolite, which also explains why DW AlSi imogolites or higher wall numbers for AlGe imogolite are not likely to be formed.  相似文献   

17.
Processes of deposition of multiwall carbon nanotubes in the synthesis by metal-organic chemical vapor deposition on hollow cylindrical substrates and the effect of the substrate area on the yield of the target product were studied. Making larger the tubular deposition reactor and the area of the cylindrical substrate enabled a substantial increase in the yield of carbon nanotubes. The technological synthesis parameters of the carbon material were optimized. Methods were developed for purification of carbon nanotubes by annealing in air, and materials were obtained with purity of no less than 98%. Physicochemical analysis methods were used to examine the structure and properties of the materials.  相似文献   

18.
多壁碳纳米管的制备及改性处理   总被引:8,自引:0,他引:8  
用自制的镍 硅二元气凝胶作催化剂,合成了多壁碳纳米管.甲烷在680℃催化裂解120min,再升温至800℃继续裂解20min,得到多壁碳纳米管.TEM、HRTEM和Raman光谱分析表明,所得多壁碳纳米管与高定向石墨具有相似的层状结构,其管径分布均匀,约15~30nm左右,长径比大,管端封闭,并含有金属催化剂粒子;采用不同方法改性处理,发现经过稀硝酸浸泡和空气氧化处理后,能去除碳管中金属催化剂,同时碳纳米管管长变短,端帽开口,能有效利用内表面,比表面积增大.  相似文献   

19.
Carbon nanotubes have attracted great interdisciplinary interest because of their unique structure and properties. However, carbon-nanotube research is challenged by several problems, such as: i) mass production of material, ii) control of length, diameter, and chirality, and iii) manipulation for use in diverse technological fields. Issues regarding the synthesis and purification as well as the functionalization and solubilization of carbon nanotubes are relevant topics in this rapidly growing field. In this paper, covalent and noncovalent approaches to functionalized and solubilized nanotubes are examined in detail, with particular emphasis on the change of properties that accompany the chemical modification.  相似文献   

20.
This paper is focused on the synthesis and characterization of a novel hybrid material based on cisplatin and docetaxel-loaded functionalized simultanously carbon nanotubes able to be used in cancer therapy as drug delivery system with controlled toxicity. This material was physico-chemically investigated by determining the structure, as evidenced by Fourier transform infrared (FTIR) spectroscopy, transmission electronmicroscopy (TEM) and its stability was studied with the aid of thermogravimetric analysis (TGA). The amount of platinum ions released into the solution of simulated body fluid (SBF) was highlighted by coupled plasma mass spectrometry (ICP-MS). Toxicology experiments were performed with MDA-MB 231 breast cancer epithelial cells. The performance of the new drug delivery hybrid material was compared with functionalised carbon nanotubes with therapeutic agents functionalized with a single therapeutic agent.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号