首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
A model based on the mesoscale simulation technique was developed for predicting the conditions for artificial enzyme formation from N-vinylcaprolactam (VCL) and N-vinylimidazole (NVI) by radical copolymerization of pre-synthesized poly-VCL blocks of different molecular weight with VCL and NVI comonomers. This synthetic procedure gives model copolymer chains. Upon a change in the solvent nature, these chains are able to form compact two-layer globular nanostructures with core–shell type morphology if the fraction of the first poly-VCL block is 25–38% of the total copolymer and the fraction of NVI monomers in the reaction mixture (in the concentration range considered) is maximum.  相似文献   

2.
Medium effects are normally studied by comparing the rates of reactions in different solvents. However, medium effects at the active site of enzymes differ dramatically from bulk solvents, both in their diversity (the presence of more than one type of "solvent") and in their spatial arrangement. We describe medium effects in a simple catalytic system, obtained by systematic alkylation of a polymeric scaffold bearing amine groups to give synzymes that catalyze the Kemp elimination of benzisoxazoles with remarkable efficiency. Our analysis indicates that catalysis by these synzymes is driven primarily by specific, localized enzyme-like medium effects, and these effects seem to differ dramatically from the nonspecific medium effects (i.e., desolvation activation) exhibited by solvents. Ligand-binding studies indicate that the synzyme active sites provide localized microenvironments affording a combination of hydrophobic and apolar regions on one hand and dipolar, protic, and positively charged on the other. Such localized microenvironments are not available in bulk solvents. A Br?nsted (leaving group) analysis indicates that, in comparison to solvent catalysis, the efficiency of synzyme catalysis shows little sensitivity to leaving group pK(a). We show that enzyme-like medium effects alone, in the absence of efficient positioning of the catalytic amine base relative to the substrate, can give rise to rate accelerations as high as 10(5), for both activated and nonactivated substrates. Supported by the accidental identification of active sites on the surfaces of noncatalytic proteins and the promiscuous activities found in many enzymes, our findings suggest that the interfaces of protein surfaces and their hydrophobic cores provide a microenvironment that is intrinsically active and may serve as a basis for further evolutionary improvements to give proficient and selective enzymes.  相似文献   

3.
4.
5.
The synthesis of multivalent dendritic cluster glycosides of mannopyranosyl-6-phosphate is presented. Poly(amido amine)-based dendrimers of 0.5-3.5 generations, containing carboxylic acid peripheral functionalities, were utilized so as to install 4, 8, 16 and 32 mannopyranosyl-6-phosphate residues at the peripheries of the dendrimers. Amide bond formation between an amine-tethered mannopyranosyl-6-phosphate monomer unit and carboxylic acid-functionalized dendrimers was conducted to synthesize the dendritic cluster glycosides. The constitutions of the Man-6-P-containing dendrimers were assessed by 1H, 13C and 31P NMR spectroscopies and the sugar content analysis by a resorcinol assay. Preliminary biological studies with few newly synthesized Man-6-P-containing dendrimers showed that these compounds could bind the purified goat liver mannose 6-phosphate receptor (MPR 300) protein.  相似文献   

6.
Multiple dendritic catalysts for asymmetric transfer hydrogenation   总被引:1,自引:0,他引:1  
The first and second generation multiple dendritic ligands based on chiral diamine were synthesized in a convergent approach and were well-characterized by NMR and MS techniques. Their ruthenium complexes prepared in situ had good solubility in the reaction medium (azeotrope of formic acid and triethylamine) and demonstrated high catalytic activity and enantioselectivity comparable to monomeric catalysts in the asymmetric transfer hydrogenation of ketones and imines. Quantitative yields and for some cases a slightly higher enantioselectivity (up to 98.7% ee) were obtained in the dendritic catalysis. Considering the high local catalyst concentrations at the periphery, diones were tested for the possible synergic reactivity between catalytic units at the surface, while no apparent differences were noted.  相似文献   

7.
8.
9.
In this study, chemical degradation of perchlorate was investigated using partially oxidized titanium ions (Ti(II) and Ti(III)). Results of UV spectra showed that the patterns of absorbance at all ratios of F/Ti(0) were similar each other, except the lowest F/Ti(0) of 0.5 (25 mM F(-)) where mixture of Ti(II) and Ti(III) might be present, resulted in shift of the peak to wavelength of 480 nm. The rate of perchlorate degradation was fastest at lowest F/Ti(0) ratio. Among catalysts investigated, only rhenium enhanced the perchlorate degradation in the presence of Ti(II), but no effect of catalysts in Ti(III). In addition, high ionic strength did not enhance the perchlorate-Ti(III) reaction, but high acid concentration did. Addition of solid acid catalysts (SACs) to Ti(III) solution showed slower perchlorate degradation, probably due to decrease in Ti(III) concentration by adsorption onto SAC. Rate constants for perchlorate degradation in Ti(III) were twofold higher than in Ti(II) when 5 N HCl used.  相似文献   

10.
Frechet-type core-functionalized chiral diamine-based dendritic ligands and hybrid dendritic ligands condensed from polyether wedge and Newkome-type poly(ether-amide) supported multiple ligands were designed and synthesized. The solubility of hybrid dendrimers was found to be finely controlled by the polyether dendron. The catalytic efficiency and recovery use of dendritic ruthenium complexes were compared in the transfer hydrogenation of acetophenone. The core-functionalized dendritic catalysts demonstrated much better recyclability, which verified the stabilizing effects of the bulky polyether wedge on the catalytically active complex. Moreover, the dendritic catalysts were applied in the asymmetric transfer hydrogenation of ketones, enones, imine, and activated olefin, and moderate to excellent enantioselectivitiy was achieved comparable to that of monomeric catalysts.  相似文献   

11.
Three generations of bidentate phosphinated Pd(II) dendrimers are efficient catalysts in the absence of copper co-catalyst for the Sonogashira reaction and are, with two cyclohexyl substituents on the phosphorus atoms, recovered by precipitation and re-used.  相似文献   

12.
Dendrimers, the aesthetically beautiful macromolecules displaying a variety of potentially useful architecture‐induced properties, are traditionally assembled in solution. However, since 1988, a number of dendritic structures have been assembled on insoluble organic and inorganic polymers, and thus dendronized supports have been formed. One of the major applications of these new materials is in the field of heterogeneous catalysis. Supported dendritic catalytic systems, bearing the catalytic units on the dendron periphery, have been examined in the last 5 years in such reactions as hydroformylation, Heck and other Pd‐catalyzed C? C bond formations, oxidation, and enantioselective addition to aldehydes. In the majority of these studies, substantial dendritic effects on the reactivity, selectivity, or recyclability of the catalysts were observed. Although a number of factors have been suggested as sources of the effects, it is most likely that the phenomenon has a multicomponent origin. Additional research, including a full determination of the effects and their causes, is likely to lead to markedly better heterogeneous catalytic systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 235–262, 2005  相似文献   

13.
Novel monometallic and dendritic SCS-pincer palladium complexes 2, 3 and 4 have been synthesized in good yields (60-89%) and high purity (palladium loading >97%). These complexes were successfully used as catalysts in the stannylation of cinnamyl chloride with hexamethylditin and in the catalytic auto-tandem reaction consisting of this stannylation followed by an electrophilic addition with 4-nitrobenzaldehyde, showing similar reaction rates and selectivities for all complexes. Dendritic complex 4 has furthermore been used in the compartmentalized catalysis of single and auto-tandem reactions, allowing catalyst reuse for four consecutive runs.  相似文献   

14.
沸石分子筛催化剂因其独特的酸性、规则的孔道结构和良好的水热及化学稳定性被广泛应用于石油化工、煤化工和精细化工等重要领域.沸石分子筛活性位点的数目和分布,以及孔结构效应是沸石分子筛催化科学研究中最根本的问题,直接影响催化反应历程和反应结果.几十年来,沸石分子筛催化研究多集中在对活性位点的基本认识和合成设计,而忽视了活性位...  相似文献   

15.
The S N2 identity exchange reactions of the fluoride ion with benzyl fluoride and 10 para-substituted derivatives (RC6H 4CH 2F, R = CH3, OH, OCH 3, NH2, F, Cl, CCH, CN, COF, and NO2) have been investigated by both rigorous ab initio methods and carefully calibrated density functional theory. Groundbreaking focal-point computations were executed for the C6H5CH 2F + F (-) and C 6H 5CH2Cl + Cl (-) SN2 reactions at the highest possible levels of electronic structure theory, employing complete basis set (CBS) extrapolations of aug-cc-pV XZ (X = 2-5) Hartree-Fock and MP2 energies, and including higher-order electron correlation via CCSD/aug-cc-pVQZ and CCSD(T)/aug-cc-pVTZ coupled cluster wave functions. Strong linear dependences are found between the computed electrostatic potential at the reaction-center carbon atom and the effective SN2 activation energies within the series of para-substituted benzyl fluorides. An activation strain energy decomposition indicates that the SN2 reactivity of these benzylic compounds is governed by the intrinsic electrostatic interaction between the reacting fragments. The delocalization of nucleophilic charge into the aromatic ring in the SN2 transition states is quite limited and should not be considered the origin of benzylic acceleration of SN2 reactions. Our rigorous focal-point computations validate the benzylic effect by establishing SN2 barriers for (F (-), Cl (-)) identity exchange in (C6H5CH2F, C6H 5CH2Cl) that are lower than those of (CH3F, CH3Cl) by (3.8, 1.6) kcal mol (-1), in order.  相似文献   

16.
Whether gold is catalytically active on its own has been hotly debated since the discovery of gold-based catalysis in the 1980s. One of the central controversies is on the O(2) activation mechanism. This work, by investigating aerobic phenylethanol oxidation on gold nanoparticles in aqueous solution, demonstrates that gold nanoparticles are capable to activate O(2) at the solid-liquid interface. Extensive density functional theory (DFT) calculations combined with the periodic continuum solvation model have been utilized to provide a complete reaction network of aerobic alcohol oxidation. We show that the adsorption of O(2) is very sensitive to the environment: the presence of water can double the O(2) adsorption energy to ~0.4 eV at commonly available edge sites of nanoparticles (~4 nm) because of its strongly polarized nature in adsorption. In alcohol oxidation, the hydroxyl bond of alcohol can break only with the help of an external base at ambient conditions, while the consequent α-C-H bond breaking occurs on pure Au, both on edges and terraces, with a reaction barrier of 0.7 eV, which is the rate-determining step. The surface H from the α-C-H bond cleavage can be easily removed by O(2) and OOH via a H(2)O(2) pathway without involving atomic O. We find that Au particles become negatively charged at the steady state because of a facile proton-shift equilibrium on surface, OOH + OH ? O(2) + H(2)O. The theoretical results are utilized to rationalize experimental findings and provide a firm basis for utilizing nanoparticle gold as aerobic oxidation catalysts in aqueous surroundings.  相似文献   

17.
The oxidation of cyclohexanol with hydrogen peroxide in the presence of tungsten-based catalysts was studied in this paper. The effect of phase transfer catalysts was discussed and clarified. [CTA]9[SbW9O33] showed the best activity and good recyclability with a conversion over 95%.  相似文献   

18.
Lemo J  Heuzé K  Astruc D 《Organic letters》2005,7(11):2253-2256
reaction: see text]. The monomeric diphosphino Pd(II) complex 1 and the first three generations of dendritic analogues G1, G2, and G3 are efficient catalysts for the Suzuki coupling reaction of halogenoarenes, including chloroarenes with phenylboronic acid. The recovery and reuse of the dendritic catalysts G1, G2, and G3 are discussed.  相似文献   

19.
1.  The existence of synergism is demonstrated; the activity of Pd-Tc/carrier catalysts in the dehydrogenation of hydrocarbons considerably exceeds that of monometallic catalysts. The most active catalysts are those with PdTc ratios from 11 to 23.
2.  In terms of reactivity on Pd-Tc catalysts, the hydrocarbons are arranged as follows: cyclohexene > cyclohexane > methylcyclohexane > ethylcyclohexane > n-hexane.
3.  Activity in the dehydrogenation of cyclohexane varies as follows: Pd-Tc/-Al2O3 > Pd-Tc/MgO > Pd-Tc/TiO2 > Pd-Tc/Y2O3 > Pd-Tc/SiO2.
4.  A decrease in CO chemisorptive capacity on bimetallic catalysts compared to monometallic catalysts is established.
Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 7, pp. 1482–1485, July, 1989.  相似文献   

20.
Dendrimers have several unique properties that make them attractive scaffolds for use in biomedical applications. To date, multivalent and multimodal dendritic structures have been synthesized predominantly by statistical modification of peripheral groups. However, the potential application of such probes in patients demands well-defined and monodisperse materials that have unique structures. Current progress in the field of chemical biology, in particular chemoselective ligation methods, renders this challenge possible. In this Minireview, we outline the different available synthetic strategies, some applications that already make use of this new generation of multivalent and multimodal architectures, and the challenges for future developments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号