首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Reaction of the side-on end-on dinitrogen complex [{(NPN)Ta}(2)(mu-H)(2)(mu-eta(1):eta(2)-N(2))] (1; in which NPN=(PhNSiMe(2)CH(2))(2)PPh), with the Lewis acids XR(3) results in the adducts [{(NPN)Ta}(2)(mu-H)(2)(mu-eta(1):eta(2)-NNXR(3))], XR(3)=GaMe(3) (2), AlMe(3) (3), and B(C(6)F(5))(3) (4). The solid-state molecular structures of 2, 3, and 4 demonstrate that the N-N bond length increases relative to those found in 1 by 0.036, 0.043, and 0.073 A, respectively. In solution complexes 2-4 are fluxional as evidenced by variable-temperature (1)H NMR spectroscopy. The (15)N{(1)H} NMR spectra of 2-4 are reported; furthermore, their vibrational properties and electronic structures are evaluated. The vibrational structures are found to be closely related to that of the parent complex 1. Detailed spectroscopic analysis on 2-4 leads to the identification of the theoretically expected six normal modes of the Ta(2)N(2) core. On the basis of experimental frequencies and the QCB-NCA procedure, the force constants are determined. Importantly, the N-N force constant decreases from 2.430 mdyn A(-1) in 1 to 1.876 (2), 1.729 (3), and 1.515 mdyn A(-1) (4), in line with the sequence of N-N bond lengths determined crystallographically. DFT calculations on a generic model of the Lewis acid adducts 2-4 reveal that the major donor interaction between the terminal nitrogen atom and the Lewis acid is mediated by a sigma/pi hybrid molecular orbital of N(2), corresponding to a sigma bond. Charge analysis performed for the adducts indicates that the negative charge on the terminal nitrogen atom of the dinitrogen ligand increases with respect to 1. The lengthening of the N-N bond observed for the Lewis adducts is therefore explained by the fact that charge donation from the complex fragment into the pi* orbitals of dinitrogen is increased, while electron density from the N-N bonding orbitals p(sigma) and pi(h) is withdrawn due to the sigma interaction with the Lewis acid.  相似文献   

2.
We report herein the synthesis and full characterization of the donor-free Lewis superacids Al(OR(F))(3) with OR(F) = OC(CF(3))(3) (1) and OC(C(5)F(10))C(6)F(5) (2), the stabilization of 1 as adducts with the very weak Lewis bases PhF, 1,2-F(2)C(6)H(4), and SO(2), as well as the internal C-F activation pathway of 1 leading to Al(2)(F)(OR(F))(5) (4) and trimeric [FAl(OR(F))(2)](3) (5, OR(F) = OC(CF(3))(3)). Insights have been gained from NMR studies, single-crystal structure determinations, and DFT calculations. The usefulness of these Lewis acids for halide abstractions has been demonstrated by reactions with trityl chloride (NMR; crystal structures). The trityl salts allow the introduction of new, heteroleptic weakly coordinating [Cl-Al(OR(F))(3)](-) anions, for example, by hydride or alkyl abstraction reactions.  相似文献   

3.
[structure: see text] C(3)-Symmetric glycoconjugates carrying three equivalent Lewis(X) antigens or beta-lactosides were synthesized from p-nitrophenyl glycosides and trimesic acid via regio- and stereocontrolled glycosylation reactions. An (1)H NMR study has shown that the C(3)-symmetric glycoconjugates soluble in water provide useful probes to investigate the Ca(2+)-dependent Lewis(X)-Lewis(X) association.  相似文献   

4.
The radical polymerization of methyl methacrylate(MMA) was carried out in the presence of combined Lewis acids of the AlCl3-FeCl2 system.Compared with the polymerization produced in the presence of single Lewis acids,AlCl3 or FeCl2,the MMA polymerization in the presence of AlCl3-FeCl2 composite in CHCl3 or 1-butanol produced a polymer with a higher isotacticity and in toluene produced a polymer with a much higher isotacticity(mm=50%) .The molecular weight and polydispersity of PMMA in the presence of Lewis ...  相似文献   

5.
An efficient and rapid solution phase combinatorial synthesis of a 3-substituted 5-arylidene-1-methyl-2-thiohydantoin library was developed. The salient feature for this library production procedure is the addition of the Lewis acid catalyst, indium(III) trifluoromethanesulfonate, which serves to facilitate the direct condensation of aldehydes with 3-substituted 1-methyl-2-thiohydantoins. Use of this Lewis acid catalyst has resulted in faster reaction times, higher conversions and better purity profiles for these condensation reactions as compared to traditional uncatalyzed reactions. The resulting 315 member library of 3-substituted 5-arylidene-1-methyl-2-thiohydantoin is described.  相似文献   

6.
The stereoselectivity of nucleophilic additions to 3-azidoalkanals was investigated. Non-chelating, BF(3)·OEt(2)-mediated Sakurai addition to 3-azidoalkanals afforded 1,3-anti products, whereas use of a chelating Lewis acid, TiCl(4), resulted in 1,3-syn products with moderate selectivity. A boat-like chelation structure of the 3-azidoalkanal with the Lewis acid is proposed to be consistent with the 1,3-syn selectivity of the reactions. Mukaiyama aldol addition to 3-azidohexanal generated 1,3-anti products regardless of the chelating ability of the Lewis acid.  相似文献   

7.
A new efficient synthesis of (2S,3R)-3-hydroxy-3-methylproline (3) is reported. During the course of a recent study on the Lewis acid promoted intramolecular opening of an epoxide by a carbamate NH, a highly concerted rearrangement was unexpectedly observed. Further investigations of substrate generality show that delta-carbamate-alpha,beta-epoxide esters commonly underwent similar rearrangements with the aid of Lewis acids. Retrosynthetic analysis of such a C(2)-N disconnection can lead to an efficient synthesis of (2S,3R)-3-hydroxy-3-methylproline (3) in high enantio purity. Stereochemistries were established by a Sharpless asymmetric dihydroxylation and a diastereoselective reductive amination.  相似文献   

8.
The radical polymerization of methyl methacrylate (MMA) was carried out in the presence of combined Lewis acids of the AlCl3-FeCl2 system. Compared with the polymerization produced in the presence of single Lewis acids, AlCl3 or FeCl2, the MMA polymerization in the presence of AlCl3-FeCl2 composite in CHCl3 or 1-butanol produced a polymer with a higher isotacticity and in toluene produced a polymer with a much higher isotacticity (mm = 50%). The molecular weight and polydispersity of PMMA in the presence of Lewis acids were similar with those in the absence of Lewis acids, although Lewis acids decelerate the polymerization of MMA. The effects of the Lewis acids were greater in a solvent with a lower polarity. A possible stereocontrol mechanism of the polymerization was proposed. The Lewis acid composite of AlCl3-FeCl2 readily formed a complex with growing species. These complexes possessed apparent bulkiness that changes the direction of monomer addition to the growing radical center.  相似文献   

9.
The stereoselectivity of the Diels-Alder reaction of (E)-γ-oxo-α,β-unsaturated thioesters 3a-3d with cyclopentadiene is greatly enhanced in the presence of Lewis acids favoring the endo acyl isomers 4a-4d . In the absence of Lewis acid, Diels-Alder reaction of 3a-3d with cyclopentadiene at 25 °C gave two adducts 4a-4d and 5a-5d in a ratio of 1:1 respectively. In the presence of Lewis acids, Diels-Alder reaction of 3a-3d with cyclopentadiene gave 4a-4d and 5a-5d in ratios of 75-94:25-6 respectively. The stereoelectivity was enhanced to ratios of 95-98:5-2 with lowering the reaction temperature. The stereochemistry of the cycloadducts 4 and 5 was confirmed by iodocyclization. Reaction of the endo-thioester 5c with I2 in aqueous THF at 0 °C gave the novel methylthio group rearranged product 6c in 80% yield, the first example of iodo-lactonization of endo-thioesters. Reaction of the endo-acyl isomer 4b with I2 under the same reaction conditions gave an isomeric mixture of 7b and 8b in 1:2 ratio. The stereochemistry of the thioester group in 8b was proved by X-ray single-crystal analysis. The solvent effect on the endo selectivity of (Z)-γ-oxo-α,β-unsaturated thioester 2b was also examined.  相似文献   

10.
Effects of Lewis acid BF3·OEt2, and BrCnsted acids TsOH, CF3COOH, H3PO4, and HCIO4 as cocatalyst respectively on the ligand-free palladium-catalyzed amidocarbonylation were investigated. SO3H-functional ionic liquids 1-methyl-3-(4-sulfonic acid)butylimidazolium hydrosulfate [MIm(CH2)4803H][HSO4] and 1-methyl-3-(4-sulfonic acid)butylimidazolium triflate [MIm(CH2)4SO3H][OTf] were firstly employed as cocatalysts instead of these Lewis acid and Brφnsted acids. By using a ligand-free and weak corrosive catalyst in situ prepared form PdBr2, LiBr.H2O, and [MIm(CH2)4SO3H][OTf], the arnidocarbo- nylation of benzaldehyde, acetamide, and CO could proceed smoothly and afford N-acetyl-α-phenylglycine with yield of 58% in [C6mim]PF6 medium.  相似文献   

11.
We report results from a computational study of the binding in complexes formed from one of the transition-metal ions Sc(+), Ti(2+), or V(3+), each of which has two valence electrons outside an argon core, and one of the second-row hydrides FH, OH(2), NH(3), BH(3), or BeH(2). The complexes that involve the electron-rich ligands FH, OH(2), and NH(3) have strong ion-dipole components to their binding. There are large stabilization energies for sigma-interactions that transfer charge from occupied lone-pair natural bond orbitals on the F, O, or N atom of the (idealized) Lewis structure into empty non-Lewis orbitals on the metal ions; these interactions effectively increase electron density in the bonding region between the metal ion and liganded atom, and the metal ions in these complexes act in the capacity of Lewis acids. The complexes formed from the electron-poor hydrides BH(3) and BeH(2) consistently incorporate bridging hydrogen atoms to support binding, and there are large stabilization energies for interactions that transfer charge from the Be-H or B-H bonds into the region between the metal ion and liganded atom. The metal ions in Sc(+)-BeH(2), Ti(2+)-BeH(2), Ti(2+)-BH(3), and V(3+)-BH(3) act in the capacity of Lewis acids, whereas the scandium ion in Sc(+)-BH(3) acts as a Lewis base.  相似文献   

12.
The cationic polymerizations of γ-methylphenylallene ( 1 ) and α-methylphenylallene ( 2 ) were carried out with some Lewis acids at 25 and 0°C in dichloromethane to obtain the corresponding polymers through allyl cations, respectively. Tin (IV) chloride was found to be an effective catalyst for the cationic polymerization of both allenes 1 and 2 compared with other Lewis acids. Thus, in the polymerization of 1 , methanol-insoluble polymer was only obtained using Tin (IV) chloride, and M?n of methanol-insoluble polymer obtained by Tin (IV) chloride was the highest in the polymerization of 2 . From the analysis of 1H- and 13C-NMR spectra of the obtained polymers, the polymer from 1 consisted of two kinds of units polymerized by each double bonds of allene 1 , whereas the polymer from 2 consisted of only one unit polymerized by terminal double bond of allene 2 . Moreover, effect of solvent on the cationic polymerizations of 1 and 2 were discussed.  相似文献   

13.
Dimethyldichlorosilane, one of the most consumed organosilicon monomers in the industry, can be prepared in a highly efficient and environmentally friendly synthesis method of disproportionating methylchlorosilanes. However, the internal mechanism of the reaction remains unclear. In this paper, the mechanism catalyzed by AlCl3/MIL‐53(Al) and AlCl3/MIL‐53(Al)@γ‐Al2O3 catalysts was calculated at B3LYP/6‐311++G(3df, 2pd) level by using the density functional theory (DFT). The results showed that although the two catalysts had similar active structures, the catalytic effects were significantly different. The Lewis acid center on the surface of γ‐Al2O3 in the core‐shell catalyst is complementary to the classic Lewis acid AlCl3 through the spatial superposition effect, which greatly improves the Lewis acid catalytic activity of AlCl3/MIL‐53(Al)@γ‐Al2O3.  相似文献   

14.
The Lewis acid-catalyzed atom transfer radical cyclization reactions of olefinic -bromo β-keto amides were investigated. It was found Lewis acid Yb(OTf)3 or Mg(ClO4)2 not only promoted the cyclization reactions, but also resulted in excellent trans stereocontrol in the cyclization products. With the catalysis of Lewis acid Yb(OTf)3 or Mg(ClO4)2 at −78°C in the presence of Et3B/O2, the cyclization reactions of C-olefinic β-keto amides provided cyclic ketones, while the cyclization reactions of N-olefinic β-keto amides led to the formation of γ-lactams, which could be converted to 3-aza-bicyclo[3,1,0]hexan-2-ones.  相似文献   

15.
A density functional theory (DFT) study is performed to determine the stability of the complexes formed between either the N or O site of 3-methyl-4-pyrimidone and 1-methyl-2-pyrimidone molecules and different ligands. The studied ligands are boron and alkali Lewis acids, namely, B(CH(3))(3), HB(CH(3))(2), H(2)B(CH(3)), BH(3), H(2)BF, HBF(2), BF(3), Li(+), Na(+), and K(+). The acids are divided into two groups according to their hardness. The reactivity predictions, according to the molecular electrostatic potential (MEP) map and the natural bond orbital (NBO) analysis, are in agreement with the calculated relative stabilities. Our findings reveal a strong regioselectivity with borane and its derivatives preferring the nitrogen site in both pyrimidone isomers, while a preference for oxygen is observed for the alkali acids in the 3-methyl-4-pyrimidone molecule. The complexation of 1-methyl-2-pyrimidone with these hard alkali acids does not show any discrimination between the two sites due to the presence of a continuous delocalized density region between the nitrogen and the oxygen atoms. The preference of boron Lewis acids toward the N site is due to the stronger B-N bond as compared to the B-O bond. The influence of fluorine or methyl substitution on the boron atom is discussed through natural orbital analysis (NBO) concentrating on the overlap of the boron empty p-orbital with the F lone pairs and methyl hyperconjugation, respectively. The electrophilicity of the boron acids gives a good overall picture of the interaction capabilities with the Lewis base.  相似文献   

16.
The role of 19-electron intermediates in the photochemical disproportionation of [CpW(CO)3]2 (Cp = C5H5) with Lewis bases (PR3; R = OMe, Bu, Ph) is investigated on the ultrafast time scale using femtosecond VIS-pump, IR-probe spectroscopy. Formation of a 19-electron (19e) species CpW(CO)3PR3*by coordination of PR3 with photogenerated 17-electron (17e) radicals CpW(CO)3* is directly observed, and equilibrium is established between the 17e radicals and the 19e intermediates favoring 19e intermediates in the order: Bu > OMe > Ph. Steric effects dominate the 17e/19e equilibrium when the cone-angle of the Lewis base exceeds a certain limiting value (between 132 degrees and 145 degrees ), but below this value electronic properties of the Lewis base control the 17e/19e dynamics. Disproportionation occurs in less than 200 picoseconds by electron transfer between a solvent caged 17e radical and 19e, highly reducing species. The rate and extent of ultrafast disproportionation depends on both the identity and concentration of the Lewis base. In low concentrations of PR3 (typically 1-2 M or less) or with Lewis bases whose equilibrium heavily favors 17e radicals (e.g., PPh3), disproportionation is rate-limited by breakdown of the solvent cage. Density functional theory calculations on vibrational frequencies and charge distributions of the various complexes support the experimental results.  相似文献   

17.
The thermochemistry of the formation of Lewis base adducts of BH(3) in tetrahydrofuran (THF) solution and the gas phase and the kinetics of substitution on ammonia borane by triethylamine are reported. The dative bond energy of Lewis adducts were predicted using density functional theory at the B3LYP/DZVP2 and B3LYP/6-311+G** levels and correlated ab initio molecular orbital theories, including MP2, G3(MP2), and G3(MP2)B3LYP, and compared with available experimental data and accurate CCSD(T)/CBS theory results. The analysis showed that the G3 methods using either the MP2 or the B3LYP geometries reproduce the benchmark results usually to within ~1 kcal/mol. Energies calculated at the MP2/aug-cc-pVTZ level for geometries optimized at the B3LYP/DZVP2 or B3LYP/6-311+G** levels give dative bond energies 2-4 kcal/mol larger than benchmark values. The enthalpies for forming adducts in THF were determined by calorimetry and compared with the calculated energies for the gas phase reaction: THFBH(3) + L → LBH(3) + THF. The formation of NH(3)BH(3) in THF was observed to yield significantly more heat than gas phase dative bond energies predict, consistent with strong solvation of NH(3)BH(3). Substitution of NEt(3) on NH(3)BH(3) is an equilibrium process in THF solution (K ≈ 0.2 at 25 °C). The reaction obeys a reversible bimolecular kinetic rate law with the Arrhenius parameters: log A = 14.7 ± 1.1 and E(a) = 28.1 ± 1.5 kcal/mol. Simulation of the mechanism using the SM8 continuum solvation model shows the reaction most likely proceeds primarily by a classical S(N)2 mechanism.  相似文献   

18.
1-Butyl-3-methylimidazolium chloroaluminate ionic liquids have been employed as an unconventional reaction media and as Lewis acid catalyst for Friedel-Crafts sulfonylation reaction of benzene and substituted benzenes with 4-methyl benzenesulfonyl chloride. The substrates exhibited enhanced reactivity, furnishing almost quantitative yields of diaryl sulfones, under ambient conditions. Studies concerning the effect of Lewis acidity of the ionic liquid on the initial extent of conversion of this reaction has been carried out. (27)Al NMR spectroscopy has been exploited as a tool to investigate the mechanistic details of the reaction. (27)Al NMR spectral studies show the predominance of [Al(2)Cl(7)](-) species in [bmim]Cl-AlCl(3), N = 0.67, acidic ionic liquid in the presence of 4-methyl benzenesulfonyl chloride, and after the reaction with the aromatic hydrocarbon, [AlCl(4)](-) species predominates. This change in speciation of aluminum can be attributed to the interaction of the Lewis acidic species [Al(2)Cl(7)](-) of the ionic liquid with the formed HCl during the sulfonylation reaction, which is evidenced by the control experiment. Preliminary investigations on Friedel-Crafts acylation further substantiate the argument.  相似文献   

19.
Several commercial Lewis acids, including those of the Bronsted type, specifically HBF(4).OEt(2), are able to catalyze the reaction between aromatic aldehydes and ethyl diazoacetate to produce 3-hydroxy-2-arylacrylic acid ethyl esters and 3-oxo-3-arylpropanoic acid ethyl esters. Reactions catalyzed by the iron Lewis acid [(eta(5)-C(5)H(5))Fe(+)(CO)(2)(THF)]BF(4)(-) (i.e., 1) have the best yields and greatest ratio of 3-hydroxy-2-arylacrylic acid ethyl ester. The product distribution of 1 is not affected in the presence of Proton Sponge, but is dependent on temperature and the nature of the substrate aldehyde, whereas the activity of HBF(4).OEt(2) is affected by the presence of Proton Sponge and is reactive at temperatures as low as -78 degrees C. Consequently, both 1 and HBF(4).OEt(2) are valuable catalysts in producing important 3-hydroxy-2-arylacrylic acid ethyl esters as precursors to biologically active compounds.  相似文献   

20.
N-Heterocyclic carbene (NHC) derived 3-azabutadienes 1 and 2 have been prepared by a single-step reaction of the corresponding NHC with cyclohexyl isocyanide. Compound 1 features π-basic, delocalized nucleophilic sites over the 3-azabutadiene moiety, therefore allowing for coordinating with small Lewis acids, such as AlCl3, GaCl3, and Me2SAuCl, to form diverse classic Lewis adducts 3 – 5 . Combination of 1 with B(C6F5)3 or [Ph3C][B(C6F5)4] resulted in single-electron transfer and the obtained radical cation was detected by EPR. In addition, a frustrated Lewis pair comprised of the π-basic 1 and BPh3 effects the splitting of the O−H bond of phenol and the N−H bond of imidazole to give 7 and 8 , respectively. An intrinsic bond orbital (IBO) analysis of the pathway leading to 8 showcases the transformation of the delocalized π-electrons of 1 to a newly formed C−H localized σ-bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号