首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on design and synthesis of salicylideneaniline derivatives(1a-1d),we demonstrate a prototypical system to investigate the excited-state intramolecular charge transfer(ESICT) coupled excited-state intramolecular proton transfer(ESIPT) reaction via the dipolar functionality of the molecular framework. In solid and aprotic solvents 1a-1d exist mainly as E conformers that possess an intramolecular sixmembered -ring hydrogen bond.Compounds 1a-1c exhibit a unique proton-transfer tautomer emission, while compound 1d exhibits remarkable dual emission due to the different solvent-polarity environment between ESICT and ESIPT states.Time-dependent density functional theory(TDDFT) calculations are reported on these Schiff bases in order to rationalize their electronic structure and absorption spectra.  相似文献   

2.
A series of salicylideneaniline derivatives la-1f were synthesized under mild condition in high yields,and characterized by ~1H NMR,HRMS,UV-vis and emission spectra.In solid and aprotic solvents 1a-lf exist mainly as E conformers that possess a sixmembered -ring hydrogen bond and undergo excited-state intramolecular proton transfer(ESIPT) reactions,resulting in a protontransfer tautomer emission.Depending on the electronic donor or acceptor strength of the substituent in either the HOMO or LUMO site,a broad tuning range of the emission from green(1c) to red(1a) has been achieved.  相似文献   

3.
A series of 2-pyridyl-pyrazole derivatives 1-4 possessing five-membered ring hydrogen bonding configuration are synthesized, the structural flexibility of which is strategically tuned to be in the order of 1 > 2 > 3 > 4. This system then serves as an ideal chemical model to investigate the correlation between excited-state intramolecular proton transfer (ESIPT) reaction and molecular skeleton motion associated with hydrogen bonds. The resulting luminescence data reveal that the rate of ESIPT decreases upon increasing the structural constraint. At sufficiently low concentration where negligible dimerization is observed, ESIPT takes place in 1 and 2 but is prohibited in 3 and 4, for which high geometry constraint is imposed. The results imply that certain structural bending motions associated with hydrogen bonding angle/distance play a key role in ESIPT. This trend is also well supported by the DFT computational approach, in which the barrier associated with ESIPT is in the order of 1 < 2 < 3 < 4. Upon increasing the concentration in cyclohexane, except for 2, the rest of the title compounds undergo ground-state dimerization, from which the double proton transfer takes place in the excited state, resulting in a relatively blue shifted dimeric tautomer emission (cf. the monomer tautomer emission). The lack of dimerization in 2 is rationalized by substantial energy required to adjust the angle of hydrogen bond via twisting the propylene bridge prior to dimerization.  相似文献   

4.
Using 7-hydroxy-1-indanone as a prototype (I), which exhibits excited-state intramolecular proton transfer (ESIPT), chemical modification has been performed at C(2)-C(3) positions by fusing benzene (molecule II) and naphthalene rings, (molecule III). I undergoes an ultrafast rate of ESIPT, resulting in a unique tautomer emission (λ(max) ~530 nm), whereas excited-state equilibrium is established for both II and III, as supported by the dual emission and the associated relaxation dynamics. The forward ESIPT (normal to proton-transfer tautomer species) rates for II and III are deduced to be (30 ps)(-1) and (22 ps)(-1), respectively, while the backward ESIPT rates are (11 ps)(-1) and (48 ps)(-1). The ESIPT equilibrium constants are thus calculated to be 0.37 and 2.2 for II and III, respectively, giving a corresponding free energy change of 0.59 and -0.47 kcal/mol between normal and tautomer species. For III, normal and tautomer emissions in solid are maximized at 435 and 580 nm, respectively, achieving a white light generation with Commission Internationale de l'Eclairage (CIE) (0.30, 0.27). An organic light-emitting diode based on III is also successfully fabricated with maximum brightness of 665 cd m(-2) at 20 V (885 mA cm(-2)) and the CIE coordinates of (0.26, 0.35). The results provide the proof of concept that the white light generation can be achieved in a single ESIPT system.  相似文献   

5.
Initiated by excited-state intramolecular proton transfer (ESIPT) reaction, an overall reaction cycle of 4-(2-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one (o-HBDI), an analogue of the core chromophore of the green fluorescent protein (GFP), has been investigated. In contrast to the native GFP core, 4-(4-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one (p-HBDI), which requires hydrogen-bonding relay to accomplish proton transfer in vivo, o-HBDI possesses a seven-membered-ring intramolecular hydrogen bond and thus provides an ideal system for mimicking an intrinsic proton-transfer reaction. Upon excitation, ESIPT takes place in o-HBDI, resulting in a ~600 nm proton-transfer tautomer emission. The o-HBDI tautomer emission, resolved by fluorescence upconversion, is comprised of an instantaneous rise to a few hundred femtosecond oscillation in the early relaxation stage. Frequency analysis derived from ultrashort pulse gives two low-frequency vibrations at 115 and 236 cm(-1), corresponding to skeletal deformation motions associated with the hydrogen bond. The results further conclude that ESIPT in o-HBDI is essentially triggered by low-frequency motions and may be barrierless along the reaction coordinate. Femtosecond UV/vis transient absorption spectra also provide supplementary evidence for the structural evolution during the reaction. In CH(3)CN, an instant rise of a 530 nm transient is resolved, which then undergoes 7.8 ps decay, accompanied by the growth of a rather long-lived 580 nm transient species. It is thus concluded that following ESIPT the cis-proton transfer isomer undergoes cis-trans-isomerization. The results of viscosity-dependent dynamics are in favor of the one-bond-flip mechanism, which is in contrast to the volume-conserving isomerization behavior for cis-stilbene and p-HBDI. Further confirmation is given by the picosecond-femtosecond transient IR absorption spectra, where several new and long-lived IR bands in the range of 1400-1500 cm(-1) are assigned to the phenyl in-plane breathing motions of the trans-proton transfer tautomer. Monitored by the nanosecond transient absorption, the 580 nm transient undergoes a ~7.7 μs decay constant, accompanied by the growth of a new ~500 nm band. The latter is assigned to a deprotonated tautomer species, which then undergoes the ground-state reverse proton recombination to the original o-HBDI in ~50 μs, achieving an overall, reversible proton transfer cycle. This assignment is unambiguously supported by pump-probe laser induced fluorescence studies. On these standpoints, a comparison of photophysical properties among o-HBDI, p-HBDI, and wild-type GFP is discussed in detail.  相似文献   

6.
The excitation behaviors for 4'-N,N-diethylamino-3-hydroxyflavone (Ia) have been investigated via femtosecond fluorescence upconversion approaches to gain detailed insights into the mechanism of the proton/charge-transfer coupling reaction. In polar solvents such as CH2Cl2 and CH3CN, in addition to a slow, solvent-polarity-dependent rate (a few tens of picoseconds(-1)) of excited-state intramolecular proton transfer (ESIPT) reported previously, early femtosecond relaxation dynamics clearly reveal that the proton-transfer tautomer emission consists of a rise component of a few hundred femtoseconds. The temporal spectral evolution at the time domain of zero to a few hundred femtoseconds further resolves two distinct emission bands consisting of a proton-transfer tautomer emission and a time-dependent Stokes shifted emission. The results, in combination with ab initio calculations on the dipolar vectors for normal and tautomer species, lead us to unveil the importance of the relationship of the dipolar vectors among various states, and hence the corresponding solvation energetics in the overall ESIPT reaction. We conclude a similar dipolar character between ground-state normal (N) and excited proton-transfer tautomer (T*) species, whereas due to the excited-state intramolecular charge transfer (ESICT), the normal excited state (N*) possesses a large dipolar change with respect to N and T*. ESIPT is thus energetically favorable at the Franck-Condon excited N*, and its rate is competitive with respect to the solvation relaxation process. After reaching the solvent equilibration, there exists an equilibrium between N* and T* states in, for example, CH3CN. Due to the greatly different equilibrium polarization between N* and T*, both forward and reversed ESIPT dynamics are associated with a solvent-induced barrier. The latter viewpoint of the equilibrium type of ESIPT in Ia is in agreement with the previous reports based on steady-state, picosecond, and femtosecond dynamic approaches.  相似文献   

7.
The solvent and temperature dependence of the phototautomerization of 1-methyl-2-(2'-hydroxyphenyl)benzimidazole (4) and the novel compounds 2-(4'-amino-2'-hydroxyphenyl)benzimidazole (1), 2-(4'-N,N-diethylamino-2'-hydroxyphenyl)benzimidazole (2), and 1-methyl-2-(4'-N,N-diethylamino-2'-hydroxyphenyl)benzimidazole (3), together with the ground-state rotamerism and tautomerism of these new compounds, have been studied by UV-vis absorption spectroscopy and steady-state and time-resolved fluorescence spectroscopy. A solvent-modulated rotameric and tautomeric equilibrium is observed in the ground state for 1, 2, and 3. In cyclohexane, these compounds mainly exist as a planar syn normal form, with the hydroxyl group hydrogen-bonded to the benzimidazole N3. In ethanol, the syn form is in equilibrium with its planar anti rotamer (for 1 and 2), with the phenyl ring rotated 180 degrees about the C2-C1' bond and with a nonplanar rotamer for compound 3. In aqueous solution, a tautomeric equilibrium is established between the anti normal form (or the nonplanar rotamer for 3) and the tautomer (with the hydroxyl proton transferred to the benzimidazole N3). The syn normal form of these compounds undergoes in all the solvents an excited-state intramolecular proton-transfer process from the hydroxyl group to the benzimidazole N3 to yield the excited tautomer. The tautomer fluorescence quantum yield of 2, 3, and 4 shows a temperature-, polarity-, and viscosity-dependent radiationless deactivation, connected with a large-amplitude conformational motion. We conclude that this excited-state conformational change experienced by the tautomer is associated with an intramolecular charge transfer from the deprotonated dialkylaminophenol or phenol (donor) to the protonated benzimidazole (acceptor), affording a nonfluorescent charge-transfer tautomer. Therefore, these compounds undergo an excited-state intramolecular coupled proton- and charge-transfer process.  相似文献   

8.
合成了多种2-(2-氨基苯基)苯并噻唑(APBT)氨基氢原子被供电子及吸电子基团取代的衍生物, 并用紫外光谱﹑荧光光谱等方法和密度泛函理论(DFT)计算研究了溶剂效应和取代基效应对衍生物的光谱性质及激发态分子内质子转移(ESIPT)的影响规律. 结果表明, 相比于非极性溶剂环己烷, 随溶剂极性的增加及APBT-溶剂分子间氢键的形成, APBT的紫外-可见最大吸收峰和荧光最大发射峰均发生了一定程度的红移, 并对APBT的ESIPT产生了影响. 在APBT分子的氨基氮原子上引入不同的吸电子或斥电子取代基, 对氮原子的电荷性质有较大的影响. 在环己烷溶剂中, 甲基取代后的APBT仅有单重荧光发射峰, 体系未发生ESIPT过程; 而COCH2Cl等吸电子基团能促进APBT的ESIPT, 其荧光发射光谱出现了明显的双重峰, 表明体系发生了激发态分子内质子转移反应. 量子化学的理论计算较好地验证了光谱实验结果.  相似文献   

9.
Two new orthohydroxy Schiff bases, 7-phenylsalicylidene benzylamine (PSBA) and 7-ethylsalicylideneaniline (ESA) have been synthesized. The excited state intramolecular proton transfer (ESIPT) and the structure of PSBA and ESA in its crystalline form and in the solvents n-hexane, n-heptane and 1,4-dioxane have been investigated by means of absorption, emission and nanosecond spectroscopy at room temperature and 77K. One ground state species has been detected both in neutral and basic solutions of both PSBA and ESA: the cis-enol form with an intramolecular hydrogen bond. The ESIPT and formation of keto tautomer are evidenced by a large Stokes shifted emission (approximately 12000 cm(-1)) at room temperature only in the case of ESA. On the other hand the keto tautomer is the predominant species at 77K in a solid matrix and as a solid sample at room temperature both in the case of ESA and PSBA. In the case of both ESA and PSBA the more intense, higher energy emission is due to the species which has not undergone ESIPT and attributed mainly due to cis-enol form. The trans-enol form is also observed by changing the excitation wavelength. Both the compounds are found to undergo a structural change to a zwitterionic and intermolecular hydrogen bonded form in the presence of a strong base like triethylamine. From the nanosecond measurements and quantum yield of fluorescence we have estimated the decay rates of proton transfer reaction in the case of PSBA. Our theoretical calculation at the AM1 level of approximation shows that the ground singlet state has a rather large activation barrier both in the case of PSBA and ESA. The barrier height is much lower on the corresponding excited singlet surface only in the case of ESA. The process is predicted to be endothermic in the ground state and exotherrmic in the excited singlet state.  相似文献   

10.
The dynamics of the excited-state intramolecular proton-transfer (ESIPT) reaction of 2-(2'-furyl)-3-hydroxychromone (FHC) was studied in micelles by time-resolved fluorescence. The proton-transfer dynamics of FHC was found to be sensitive to the hydration and charge of the micelles, demonstrated through a decrease of the ESIPT rate constant (k(PT)) in the sequence cationic → nonionic → anionic micelles. A remarkably slow ESIPT with a time constant (τ(PT)) of ~100 ps was observed in the anionic sodium dodecyl sulfate and sodium tetradecyl sulfate micelles, whereas it was quite fast (τ(PT) ≈ 15 ps) in the cationic cetyltrimethylammonium bromide and tetradecyltrimethylammonium bromide micelles. In the nonionic micelles of Brij-78, Brij-58, Tween-80, and Tween-20, ESIPT occurred with time constants (τ(PT) ≈ 35-65 ps) intermediate between those of the cationic and anionic micelles. The slower ESIPT dynamics in the anionic micelles than the cationic micelles is attributed to a relatively stronger hydration of the negatively charged headgroups of the former than the positively charged headgroups of the latter, which significantly weakens the intramolecular hydrogen bond of FHC in the Stern layer of the anionic micelles compared to the latter. In addition, electrostatic attraction between the positively charged -N(CH(3))(3)(+) headgroups and the negatively charged 4-carbonyl moiety of FHC effectively screens the intramolecular hydrogen bond from the perturbation of water molecules in the micelle-water interface of the cationic micelles, whereas in the anionic micelles, this screening of the intramolecular hydrogen bond is much less efficient due to an electrostatic repulsion between its negatively charged -OSO(3)(-) headgroups and the 4-carbonyl moiety. As for the nonionic micelles, a moderate level of hydration, and the absence of any charged headgroups, causes an ESIPT dynamics faster than that of the anionic but slower than that of the cationic micelles. Furthermore, the ESIPT rate decreased with a decrease of the hydrophobic chain length of the surfactants due to the stronger hydration of the micelles of shorter chain surfactants than those of longer chain surfactants, arising from a less compact packing of the former surfactants compared to the latter surfactants.  相似文献   

11.
Absorption, fluorescence and fluorescence excitation spectroscopy and single photon counting time dependence spectrofluorimetry have been used to study the inter- and intramolecular excited state proton transfer (ESIPT) reactions in 2-hydroxy-9H-carbazole-1-carboxylic acid (2-HCA). Except in cyclohexane and water (pH 5) dual fluorescence is observed in rest of the solvents used. Normal Stokes shifted band seems to originate from 2-HCA-1-c and tautomer emission band from the tautomer formed by ESIPT in 2-HCA-1-c followed by structural reorganization. Both these emission band systems originate from the same ground state species. AM1 and CNDO/S-CI calculations have been carried out to establish the identity of the species. Different prototropic equilibria have been determined and discussed.  相似文献   

12.
The excited state intramolecular proton transfer (ESIPT) processes in 3‐methylsalicyclic acid (3‐MeSA) and 3‐methoxysalicyclic acid (3‐MeOSA) have been investigated in cyclohexane medium by emission spectroscopic techniques. The ESIPT process was characterized in 3‐MeSA from the large Stokes fluorescent band (455 nm), but it was suppressed by 3‐MeOSA in cyclohexane. The ESIPT process was found to be accelerated both in 3‐MeSA and 3‐MeOSA in the presence of a hydrogen bond accepting agent, triethylamine (TEA). Further, theoretical calculations were carried out at the ground and excited states to complement the experimental evidences.  相似文献   

13.
The ultrafast proton-transfer dynamics of 1-hydroxy-2-acetonaphthone has been theoretically analyzed in the ground and first singlet excited electronic states by density functional theory calculations and quantum dynamics. The potential energies obtained in the ground electronic state reveal that the proton-transfer process does not lead to a stable keto tautomer unless the transfer of the hydrogen from the enol form is accompanied by an internal rotation of the newly formed O-H bond. Calculations in the first singlet excited electronic state point to a very low barrier for the formation of the keto tautomer. The analysis of the calculated frequencies of the two tautomers in the excited state unveils a coupling of the skeletal motions (low frequency modes) with the proton-transfer process, as it has been stated from time-resolved experiments. The electronic energies obtained by the time-dependent density functional theory formalism have been fitted to a monodimensional potential energy surface in order to perform an exact quantum dynamics study of the process. Our results show that the proton-transfer process is completed within 25.5 fs, in remarkable good agreement with experiments.  相似文献   

14.
15.
Herein, two compounds, 4-2′-hydroxybenzylidenehydrazinyl-N-butyl-1,8-naphthalimide(BN-1) and 4-benzylidenehydra-zinyl-N-butyl-1,8-naphthalimide(BN-2), were synthesized to explore the hydrogen bonding effect on mechanoresponsive luminescent(MRL). The results showed that compound BN-1 exhibited strong emission in solution and solid-state compared with compound BN-2. After grinding, the emission intensity of compound BN-1 sharply decreased by as much as 15 times with an obvious red-shift from 552 nm to 577 nm. The control compound BN-2, by contrast, did not change so much before and after grinding. Single crystal analysis suggests that BN-1 molecule formed strong intramolecular interaction via ―N=N···H―O hydrogen bond with a distance of 0.2632 nm. An excited-state intramolecular proton transfer(ESIPT) based fluorophore featured this intramolecular hydrogen bond. The intramolecular hydrogen bond as well as other intermolecular interactions can rigidify the molecular conformation of compound BN-1 in solid-state, and thus suppress the nonradiative pathways, resulting in strong emission. These intra- and intermolecular interactions were destroyed by mechanical stimuli, accompanied by molecular conformation change that decreases the luminescence and blocks the ESIPT process. The MRL process was also demonstrated by scanning electron microscopy and powder X-ray diffraction. The molecular stacking mode changed from crystalline to a disordered amorphous state after grinding.  相似文献   

16.
The electronic transitions occurring in 4-(N,N-dimethylamino)-3-hydroxyflavone (DMAF) and 2-furanyl-3-hydroxychromone (FHC) were investigated using the TDDFT method in aprotic and protic solvents. The solvent effect was incorporated into the calculations via the PCM formalism. The H-bonding between solute and protic solvent was taken into account by considering a molecular complex between these molecules. To examine the effect of the H-bond on the ESIPT reaction, the absorption and emission wavelengths as well as the energies of the different states that intervene during these electronic transitions were calculated in acetonitrile, ethanol and methanol. The calculated positions of the absorption and emission wavelengths in various solvents were in excellent agreement with the experimental spectra, validating our approach. We found that in DMAF, the hydrogen bonding with protic solvents makes the ESIPT reaction energetically unfavourable, which explains the absence of the ESIPT tautomer emission in protic solvents. In contrast, the excited tautomer state of FHC remains energetically favourable in both aprotic and protic solvents. Comparing our calculations with the previously reported time-resolved fluorescence data, the ESIPT reaction of DMAF in aprotic solvents is reversible because the emitting states are energetically close, whereas in FHC, ESIPT is irreversible because the tautomer state is below the corresponding normal state. Therefore, the ESIPT reaction in DMAF is controlled by the relative energies of the excited states (thermodynamic control), while in FHC the ESIPT is controlled probably by the energetic barrier (kinetic control).  相似文献   

17.
A novel class of 2-(2'-hydroxyphenyl)benzothiazole-based (HBT-based) excited-state intramolecular proton-transfer (ESIPT) compounds, N,N'-di[3-Hydroxy-4-(2'-benzothiazole)phenyl]isophthalic amide (DHIA) and N,N'-di[3-Hydroxy-4-(2'-benzothiazole)phenyl]5-tert-butyl-isophthalic amide (DHBIA) has been feasibly synthesized and the properties of their nanoparticles in THF/H2O mixed solvent were investigated. Both compounds were found to exhibit aggregation-induced emission enhancement (AIEE) due to restricted intramolecular motion and easier intramolecular proton transfer in solid state. On identical experimental conditions, the emission of DHBIA aggregates increased more remarkably than that of DHIA. Different aggregation forms of these two organic compounds, due to the steric hindrance of a single tert-butyl group, could be responsible for the notably different degrees of the fluorescence enhancement. Their aggregation modes were investigated on the basis of time-dependent absorption, scanning electron microscope (SEM) images, and molecular modeling with theoretical calculation. The photophysical dynamics were also depicted based on the extremely fast ESIPT four-level cycle.  相似文献   

18.
Abstract— The photophysical properties of 2-(2'-hydroxy-4'-diethylaminophenyl) benzothiazole (HABT) have been investigated by steady-state and time-resolved spectroscopies. In n-heptane HABT exhibits both normal and tautomer emissions with ∼equal fluorescence intensity at room temperature, in contrast to a previous report in which negligible tautomer emission was observed. The normal/tautomer (400/500 nm) ratio of emission intensity increases as the temperature decreases. Two possible excited-state intramolecular proton transfer (ESIPT) mechanisms are proposed, which cannot be resolved at the present stage. One proposed mechanism incorporates state mixing between -OH and -N(C2H5)2 charge transfer states, resulting in a significant energy barrier for ESIPT. An alternative mechanism is also proposed in which fast proton tunneling may take place between enol and keto forms, which are in equilibrium in the excited singlet state.  相似文献   

19.
A series of compounds containing 5‐(2‐aminobenzylidene)‐2,3‐dimethyl‐3,5‐dihydro‐4H‐imidazol‐4‐one ( o ‐ABDI ) as the core chromophore with a seven‐membered‐ring N?H‐type intramolecular hydrogen bond have been synthesized and characterized. The acidity of the N?H proton and thus the hydrogen‐bond strength can be fine‐tuned by replacing one of the amino hydrogen atoms by a substituent R, the acidity increasing with increasing electron‐withdrawing strength of R, that is, in the order H<COCH3<COPh<Tosyl<COCF3. The tosyl and trifluoroacetyl derivatives undergo ultrafast, irreversible excited‐state intramolecular proton transfer (ESIPT) that results in proton‐transfer emission solely in the red region. Reversible ESIPT, and hence dual emission, involving the normal and proton‐transfer tautomers was resolved for the acetyl‐ and benzyl‐substituted counterparts. For o ‐ABDI , which has the weakest acidity, ESIPT is prohibited due to its highly endergonic reaction. The results clearly demonstrate the harnessing of ESIPT by modifying the proton acidity and hydrogen‐bonding strength in a seven‐membered‐ring intramolecular hydrogen‐bonding system. For all the compounds studied, the emission quantum yields are weak (ca. 10?3) in dichloromethane, but strong in the solid form, ranging from 3.2 to 47.4 %.  相似文献   

20.
Excited-state intramolecular proton transfer (ESIPT)-based solid luminescent materials with multiple hydrogen bond acceptors (HBAs) remain unexplored. Herein, we introduced a family of Janus-type ESIPT chromophores featuring distinctive hydrogen bond (H-bond) selectivity between competitive HBAs in a single molecule. Our investigations showed that the central hydroxyl group preferentially forms intramolecular H-bonds with imines in imine-modified 2-hydroxyphenyl benzothiazole (HBT) chromophores but tethers the benzothiazole moiety in hydrazone-modified HBT chromophores. Imine-derived HBTs generally exhibit higher fluorescence efficiency, while hydrazone-derived HBTs show a reduced overlap between the absorption and fluorescence bands. Quantum chemical calculations unveiled the molecular origins of the biased intramolecular H-bonds and their impact on the ESIPT process. This Janus-type ESIPT chromophore skeleton provides new opportunities for the design of solid luminescent materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号