首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is presented for attempting global minimization for a function of continuous variables subject to constraints. The method, calledAdaptive Simulated Annealing (ASA), is distinguished by the fact that the fixed temperature schedules and step generation routines that characterize other implementations are here replaced by heuristic-based methods that effectively eliminate the dependence of the algorithm's overall performance on user-specified control parameters. A parallelprocessing version of ASA that gives increased efficiency is presented and applied to two standard problems for illustration and comparison.This research was supported by the University Research Initiative of the U.S. Army Research Office.  相似文献   

2.
The Monte Carlo within Metropolis (MCwM) algorithm, interpreted as a perturbed Metropolis–Hastings (MH) algorithm, provides an approach for approximate sampling when the target distribution is intractable. Assuming the unperturbed Markov chain is geometrically ergodic, we show explicit estimates of the difference between the nth step distributions of the perturbed MCwM and the unperturbed MH chains. These bounds are based on novel perturbation results for Markov chains which are of interest beyond the MCwM setting. To apply the bounds, we need to control the difference between the transition probabilities of the two chains and to verify stability of the perturbed chain.  相似文献   

3.
Hamiltonian Monte Carlo (HMC) has been progressively incorporated within the statistician’s toolbox as an alternative sampling method in settings when standard Metropolis–Hastings is inefficient. HMC generates a Markov chain on an augmented state space with transitions based on a deterministic differential flow derived from Hamiltonian mechanics. In practice, the evolution of Hamiltonian systems cannot be solved analytically, requiring numerical integration schemes. Under numerical integration, the resulting approximate solution no longer preserves the measure of the target distribution, therefore an accept–reject step is used to correct the bias. For doubly intractable distributions—such as posterior distributions based on Gibbs random fields—HMC suffers from some computational difficulties: computation of gradients in the differential flow and computation of the accept–reject proposals poses difficulty. In this article, we study the behavior of HMC when these quantities are replaced by Monte Carlo estimates. Supplemental codes for implementing methods used in the article are available online.  相似文献   

4.
Geyer (J. Roy. Statist. Soc. 56 (1994) 291) proposed Monte Carlo method to approximate the whole likelihood function. His method is limited to choosing a proper reference point. We attempt to improve the method by assigning some prior information to the parameters and using the Gibbs output to evaluate the marginal likelihood and its derivatives through a Monte Carlo approximation. Vague priors are assigned to the parameters as well as the random effects within the Bayesian framework to represent a non-informative setting. Then the maximum likelihood estimates are obtained through the Newton Raphson method. Thus, out method serves as a bridge between Bayesian and classical approaches. The method is illustrated by analyzing the famous salamander mating data by generalized linear mixed models.  相似文献   

5.
We propose a multinomial probit (MNP) model that is defined by a factor analysis model with covariates for analyzing unordered categorical data, and discuss its identification. Some useful MNP models are special cases of the proposed model. To obtain maximum likelihood estimates, we use the EM algorithm with its M-step greatly simplified under Conditional Maximization and its E-step made feasible by Monte Carlo simulation. Standard errors are calculated by inverting a Monte Carlo approximation of the information matrix using Louis’s method. The methodology is illustrated with a simulated data.  相似文献   

6.
Computer simulation with Monte Carlo is an important tool to investigate the function and equilibrium properties of many biological and soft matter materials solvable in solvents.The appropriate treatment of long-range electrostatic interaction is essential for these charged systems,but remains a challenging problem for large-scale simulations.We develop an efficient Barnes-Hut treecode algorithm for electrostatic evaluation in Monte Carlo simulations of Coulomb many-body systems.The algorithm is based on a divide-and-conquer strategy and fast update of the octree data structure in each trial move through a local adjustment procedure.We test the accuracy of the tree algorithm,and use it to perform computer simulations of electric double layer near a spherical interface.It is shown that the computational cost of the Monte Carlo method with treecode acceleration scales as log N in each move.For a typical system with ten thousand particles,by using the new algorithm,the speed has been improved by two orders of magnitude from the direct summation.  相似文献   

7.
We consider a modified version of the de Finetti model in insurance risk theory in which, when surpluses become negative the company has the possibility of borrowing, and thus continue its operation. For this model we examine the problem of estimating the time-in-the red over a finite horizon via simulation. We propose a smoothed estimator based on a conditioning argument which is very simple to implement as well as particularly efficient, especially when the claim distribution is heavy tailed. We establish unbiasedness for this estimator and show that its variance is lower than the naïve estimator based on counts. Finally we present a number of simulation results showing that the smoothed estimator has variance which is often significantly lower than that of the naïve Monte-Carlo estimator.  相似文献   

8.
Dynamically rescaled Hamiltonian Monte Carlo is introduced as a computationally fast and easily implemented method for performing full Bayesian analysis in hierarchical statistical models. The method relies on introducing a modified parameterization so that the reparameterized target distribution has close to constant scaling properties, and thus is easily sampled using standard (Euclidian metric) Hamiltonian Monte Carlo. Provided that the parameterizations of the conditional distributions specifying the hierarchical model are “constant information parameterizations” (CIPs), the relation between the modified- and original parameterization is bijective, explicitly computed, and admit exploitation of sparsity in the numerical linear algebra involved. CIPs for a large catalogue of statistical models are presented, and from the catalogue, it is clear that many CIPs are currently routinely used in statistical computing. A relation between the proposed methodology and a class of explicitly integrated Riemann manifold Hamiltonian Monte Carlo methods is discussed. The methodology is illustrated on several example models, including a model for inflation rates with multiple levels of nonlinearly dependent latent variables. Supplementary materials for this article are available online.  相似文献   

9.
This paper is concerned with the approximate computation of choice probabilities in mixed logit models. The relevant approximations are based on the Taylor expansion of the classical logit function and on the high order moments of the random coefficients. The approximate choice probabilities and their derivatives are used in conjunction with log likelihood maximization for parameter estimation. The resulting method avoids the assumption of an apriori distribution for the random tastes. Moreover experiments with simulation data show that it compares well with the simulation based methods in terms of computational cost.  相似文献   

10.
We study the integration of functions with respect to an unknown density. Information is available as oracle calls to the integrand and to the non-normalized density function. We are interested in analyzing the integration error of optimal algorithms (or the complexity of the problem) with emphasis on the variability of the weight function. For a corresponding large class of problem instances we show that the complexity grows linearly in the variability, and the simple Monte Carlo method provides an almost optimal algorithm. Under additional geometric restrictions (mainly log-concavity) for the density functions, we establish that a suitable adaptive local Metropolis algorithm is almost optimal and outperforms any non-adaptive algorithm.  相似文献   

11.
In this paper we analyse applicability and robustness of Markov chain Monte Carlo algorithms for eigenvalue problems. We restrict our consideration to real symmetric matrices.

Almost Optimal Monte Carlo (MAO) algorithms for solving eigenvalue problems are formulated. Results for the structure of both – systematic and probability error are presented. It is shown that the values of both errors can be controlled independently by different algorithmic parameters. The results present how the systematic error depends on the matrix spectrum. The analysis of the probability error is presented. It shows that the close (in some sense) the matrix under consideration is to the stochastic matrix the smaller is this error. Sufficient conditions for constructing robust and interpolation Monte Carlo algorithms are obtained. For stochastic matrices an interpolation Monte Carlo algorithm is constructed.

A number of numerical tests for large symmetric dense matrices are performed in order to study experimentally the dependence of the systematic error from the structure of matrix spectrum. We also study how the probability error depends on the balancing of the matrix.  相似文献   


12.
We propose sequential Monte Carlo-based algorithms for maximum likelihood estimation of the static parameters in hidden Markov models with an intractable likelihood using ideas from approximate Bayesian computation. The static parameter estimation algorithms are gradient-based and cover both offline and online estimation. We demonstrate their performance by estimating the parameters of three intractable models, namely the α-stable distribution, g-and-k distribution, and the stochastic volatility model with α-stable returns, using both real and synthetic data.  相似文献   

13.
The efficiency of discrete stochastic consistent estimators (the weighted uniform sampling and estimator with a correcting multiplier) of the Monte Carlo method is investigated. Confidence intervals and upper bounds on the variances are obtained, and the computational cost of the corresponding discrete stochastic numerical scheme is estimated.  相似文献   

14.
Test problems for the nonlinear Boltzmann and Smoluchowski kinetic equations are used to analyze the efficiency of various versions of weighted importance modeling as applied to the evolution of multiparticle ensembles. For coagulation problems, a considerable gain in computational costs is achieved via the approximate importance modeling of the “free path” of the ensemble combined with the importance modeling of the index of a pair of interacting particles. A weighted modification of the modeling of the initial velocity distribution was found to be the most efficient for model solutions to the Boltzmann equation. The technique developed can be useful as applied to real-life coagulation and relaxation problems for which the model problems considered give approximate solutions.  相似文献   

15.
In recent years efficient methods have been developed for calculating derivative price sensitivities using Monte Carlo simulation. Malliavin calculus has been used to transform the simulation problem in the case where the underlying follows a Markov diffusion process. In this work, recent developments in the area of Malliavin calculus for Levy processes are applied and slightly extended. This allows for derivation of similar stochastic weights as in the continuous case for a certain class of jump-diffusion processes.  相似文献   

16.
Model comparison for the purposes of selection, averaging, and validation is a problem found throughout statistics. Within the Bayesian paradigm, these problems all require the calculation of the posterior probabilities of models within a particular class. Substantial progress has been made in recent years, but difficulties remain in the implementation of existing schemes. This article presents adaptive sequential Monte Carlo (SMC) sampling strategies to characterize the posterior distribution of a collection of models, as well as the parameters of those models. Both a simple product estimator and a combination of SMC and a path sampling estimator are considered and existing theoretical results are extended to include the path sampling variant. A novel approach to the automatic specification of distributions within SMC algorithms is presented and shown to outperform the state of the art in this area. The performance of the proposed strategies is demonstrated via an extensive empirical study. Comparisons with state-of-the-art algorithms show that the proposed algorithms are always competitive, and often substantially superior to alternative techniques, at equal computational cost and considerably less application-specific implementation effort. Supplementary materials for this article are available online.  相似文献   

17.
Hidden Markov models are used as tools for pattern recognition in a number of areas, ranging from speech processing to biological sequence analysis. Profile hidden Markov models represent a class of so-called “left–right” models that have an architecture that is specifically relevant to classification of proteins into structural families based on their amino acid sequences. Standard learning methods for such models employ a variety of heuristics applied to the expectation-maximization implementation of the maximum likelihood estimation procedure in order to find the global maximum of the likelihood function. Here, we compare maximum likelihood estimation to fully Bayesian estimation of parameters for profile hidden Markov models with a small number of parameters. We find that, relative to maximum likelihood methods, Bayesian methods assign higher scores to data sequences that are distantly related to the pattern consensus, show better performance in classifying these sequences correctly, and continue to perform robustly with regard to misspecification of the number of model parameters. Though our study is limited in scope, we expect our results to remain relevant for models with a large number of parameters and other types of left–right hidden Markov models.  相似文献   

18.
When using a model-based approach to geostatistical problems, often, due to the complexity of the models, inference relies on Markov chain Monte Carlo methods. This article focuses on the generalized linear spatial models, and demonstrates that parameter estimation and model selection using Markov chain Monte Carlo maximum likelihood is a feasible and very useful technique. A dataset of radionuclide concentrations on Rongelap Island is used to illustrate the techniques. For this dataset we demonstrate that the log-link function is not a good choice, and that there exists additional nonspatial variation which cannot be attributed to the Poisson error distribution. We also show that the interpretation of this additional variation as either micro-scale variation or measurement error has a significant impact on predictions. The techniques presented in this article would also be useful for other types of geostatistical models.  相似文献   

19.
In this article, we provide a review and development of sequential Monte Carlo (SMC) methods for option pricing. SMC are a class of Monte Carlo-based algorithms, that are designed to approximate expectations w.r.t a sequence of related probability measures. These approaches have been used successfully for a wide class of applications in engineering, statistics, physics, and operations research. SMC methods are highly suited to many option pricing problems and sensitivity/Greek calculations due to the nature of the sequential simulation. However, it is seldom the case that such ideas are explicitly used in the option pricing literature. This article provides an up-to-date review of SMC methods, which are appropriate for option pricing. In addition, it is illustrated how a number of existing approaches for option pricing can be enhanced via SMC. Specifically, when pricing the arithmetic Asian option w.r.t a complex stochastic volatility model, it is shown that SMC methods provide additional strategies to improve estimation.  相似文献   

20.
The problem of marginal density estimation for a multivariate density function f(x) can be generally stated as a problem of density function estimation for a random vector λ(x) of dimension lower than that of x. In this article, we propose a technique, the so-called continuous Contour Monte Carlo (CCMC) algorithm, for solving this problem. CCMC can be viewed as a continuous version of the contour Monte Carlo (CMC) algorithm recently proposed in the literature. CCMC abandons the use of sample space partitioning and incorporates the techniques of kernel density estimation into its simulations. CCMC is more general than other marginal density estimation algorithms. First, it works for any density functions, even for those having a rugged or unbalanced energy landscape. Second, it works for any transformation λ(x) regardless of the availability of the analytical form of the inverse transformation. In this article, CCMC is applied to estimate the unknown normalizing constant function for a spatial autologistic model, and the estimate is then used in a Bayesian analysis for the spatial autologistic model in place of the true normalizing constant function. Numerical results on the U.S. cancer mortality data indicate that the Bayesian method can produce much more accurate estimates than the MPLE and MCMLE methods for the parameters of the spatial autologistic model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号