首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accelerator mass spectrometry (AMS) is an extremely sensitive nuclear physics technique developed in the mid-70s for radiocarbon dating of historical artefacts. The technique centres round the use of a tandem Van de Graaff accelerator to generate the potential energy to permit separation of elemental isotopes at the single atom level. AMS was first used in the early 90s for the analysis of biological samples containing enriched 14C for toxicology and cancer research. Since that time biomedical AMS has been used in the study of (1) metabolism of xenobiotics in animals and humans (2) pathways of drug metabolism (3) biomarkers (4) metabolism of endogenous molecules including vitamins (5) DNA and protein binding studies and (6) clinical diagnosis. A new drug development concept which relies on the ultrasensitivity of AMS known as human microdosing (Phase 0) is being used to obtain early human metabolism information of candidate drugs arising out of discovery. These various aspects of AMS are reviewed in this article and a perspective on future applications of AMS provided.  相似文献   

2.
Summary The advantages that accelerator mass spectrometry (AMS) provide for radiocarbon analysis, notably smaller sample sizes and shorter measurement times, also apply to the analysis of 129I. In this paper, the requirements for a mass spectrometry system for measuring extremely low concentrations of rare atoms are discussed and these requirements are illustrated using the details of the AMS analysis of 129I. As an example of an application of this AMS technology, a series of 129I measurements, used to identify isolated events in which radioactivity has been atmospherically transported into the Arctic, is described. Such investigations could not be carried out without the small sample size capability of AMS analysis.  相似文献   

3.
A direct simple and fast method was established, to overcome the influence of low and high level impurities on the measurement of 235U/238U isotopic ratio in nuclear spent fuel safeguard by thermal ionization mass spectrometry (TIMS), by using refractory metal oxide. The addition of refractory metal oxides forming solution (RMOFS), in certain proportions alongside with the spent fuel solution on the sample filaments were found to be useful during the analysis of uranium isotopic ratio by TIMS. RMOFS (with oxide melting point exceeding 2,000 °C), and particularly that of magnesium, were found to be very effective in improving the quality of the ion signal of 235U and 238U, when added without the need for prior purification. Solutions of chromium, cerium, thorium, and magnesium were investigated, to select the more convenient one, and it was found that magnesium was very useful to start with. The method was very simple, improve both the accuracy and precision of the collected data, reduce the time required to achieve steady uranium pilot signal, and hence the over all time of the analysis, regardless of the level of impurities present.  相似文献   

4.
High-resolution alpha-particle spectrometry was performed on three uranium materials enriched in 235U. Besides the 235U peaks, separate peaks belonging to impurity traces of 234U could be quantified. Relying on the isotopic composition of the uranium, as determined by mass spectrometry, the ratio of the half-lives of 238U and 235U was determined via the activity ratio of 234U and 235U in the materials. As an intermediate link, the 234U/238U half-life ratio was taken from published mass spectrometric analyses of ‘secular equilibrium’ uranium material. The resulting half-life ratio T 1/2(238U)/T 1/2(235U) = 6.351±0.031 is in agreement with the commonly adopted half-life values determined by Jaffey et al.  相似文献   

5.
Based on the encouraging results of our initial efforts to develop a 90Sr accelerator mass spectrometry capability, we have undertaken efforts to enhance our system. By changing some key operating parameters and constructing an optimized detector we were able to improve the discrimination of 90Sr from the isobaric interference 90Zr and reduce our instrumental background by nearly two orders of magnitude. Our current background (4 × 106 atoms, 3 mBq) is comparable to that achievable by decay counting, but is still a factor of ten higher than what is theoretically predicted based on the efficiency of our system. Therefore, future plans include implementation of a time-of-flight system to improve the rejection of 90Zr.  相似文献   

6.
An intercomparison of the methodology (alpha, beta and gamma spectrometry) used for 238U, 235U and 210Pb determination was carried out based on 38 sediment samples. The activity range of the samples varied from 10–700 Bq/kg for 210Pb, 1–35 Bq/kg for 235U and 10–800 Bq/kg for 238U. Results obtained using the three methods were not statistically different at high activity levels, but agreement between the results decreased at lower sample activity levels. For 210Pb, the smallest difference was found between alpha and gamma spectrometry. A good correlation between results from alpha and gamma spectrometry was observed over the whole activity range. In beta spectrometry, the results were slightly higher than those obtained by alpha or gamma spectrometry due to the impurity of 228Ra. In 238U analysis, good correspondence was observed between 238U determined by gamma and alpha spectrometry, particularly at higher 238U activity concentrations over 100 Bq/kg. In 235U analysis, attention needs to be paid to interference from 226Ra and its reduction.  相似文献   

7.
8.
Activity concentrations of 238U, 235U and 234U were determined in different sources of drinking water at the Obuasi gold mines and its surrounding areas in Ghana. Water samples collected from the mines and its surrounding areas were analyzed using direct gamma-ray spectrometry and neutron activation analysis. The 234U/238U and 235U/238U ratios were calculated and the mean values range from 1.27 to 1.38 and from 0.044 to 0.045 respectively. The average 234U/238U ratio was from 1.27 for groundwater to 1.38 for treated water, demonstrating the lack of equilibrium. The average 235U/238U activity ratio is 0.045, indicating that only natural uranium was detected in the samples investigated.  相似文献   

9.
For the first time, a radiological study for the dissolved 238U, 234U, 210Pb and 210Po was held in major Greek rivers across the country. 234U/238U activity ratios are above one in all samples and 210Po/210Pb activity ratios are respectively below the unit indicating the disequilibrium in the samples. Quite satisfactory correlations were observed among 234U and 238U as well as among 210Po and 210Pb values. Uranium isotopes were separated by ion exchange and electroplated on stainless steel plates. 210Po was spontaneously deposited on nickel plates, while 210Pb was indirectly determined through the ingrowth of 210Po. The sources were measured by a-spectrometry.  相似文献   

10.
The precision in measurement of trace level uranium isotopic ratio, i.e., 236U/238U or 234U/238U, on single Faraday detector with narrow dynamic range is very hard to achieve. this is mainly due to the narrow dynamic range of a single detector systems. A significant improvement in mass spectrometric determination of 236U/238U ratio has been achieved by employing an alternate method using a single Faraday detector of narrow dynamic range. The method makes use of the precise measurements of the 236U/234U ratio, 234U/235U ratio and 235U/238U ratio, which are used to calculate the 236U/238U ratio using the equation 236U/238U=236U/234234U/235235U/238U. Despite the fact that correlation of the data tends to increase the uncertainty in the result, our results show a significant improvement, i.e., more than 8 times better precision in measuring the 236U/238U ratio with this method (σ=3.98×10−08) as compared to direct measurement of 236U/238U (σ=3.104×10−07). The method widens the applicability of the single collector system with narrow dynamic range and it will potentially be helpful to improve the precision in the case of the static multi-collector system also. The objective of the present study was to compare the results of the same sample analyzed with the present alternate method and the direct method for precision.  相似文献   

11.
The scanning transmission ion microscope (STIM) has been used to determine the intracellular mass of human cultured cells. A 4He+ microbeam of 2.0 MeV energy was chosen to obtain enhanced ion-energy-loss sensitivity through the micron-thick freeze-dried cells. Local sample mass calculation, based on energy-loss conversion by use of appropriate matrix stopping powers, was performed by use of dedicated software. The method was validated with epoxy resin sections and polymer foil as analogues of biological samples in the range of (intra)cellular thickness, 150 to 3000 nm. STIM analysis resulted in less than 5% error in mass determination. 4He+ energy-loss micro-spectrometry was performed on freeze-dried human ovarian cancer cells, the mean areal mass obtained was 120 microg cm(-2) (200 microg cm(-2) in the nucleus and 250 microg cm(-2) in nucleoli). This method is particularly useful for mass normalization of X-ray fluorescence yields resulting from particle-induced X-ray emission microanalysis (micro-PIXE). When performed successively these two ion-beam micro-analytical methods enable the mapping of true element concentrations within single cells.  相似文献   

12.
Liquid state, high resolution 13C NMR spectroscopy and mass spectrometry were used to study the composition and structure of soil organic matter (SOM) using soil extracts from two long-term experiments at the Rothamsted Experimental Station. Both one- and two-dimensional NMR techniques were applied. 13C NMR sub-spectra of the CH n (n=0...3) groups, obtained by the Distortionless Enhancement by Polarisation Transfer (DEPT) technique, were used for the elucidation of the qualitative and quantitative composition of humic and fulvic acids in the soils. The chemical structure of SOM was further analysed at the molecular level through Fast Atom Bombardment Mass Spectrometry (FABMS) and Gas Chromatography-Mass Spectrometry (GC/MS). Humic and fulvic extract results were not only compared to each other, but also to the solid state 13C NMR results for the complete soil sample.  相似文献   

13.
Summary Accelerator mass spectrometry (AMS) is the most sensitive, safe and precise analytical method for quantifying long-lived isotope in biomedical research with animals as well as human beings. In Korea, AMS Laboratory has been operating successfully for years measuring especially archeological samples for 14C dating. In this year, a biological sample pretreatment facility was setup and we have also started to work on biomedical applications. As a preliminary study, we have measured the natural background levels of 14C in tissues and blood of humans and rats. The results were agreed with the other reported levels and gave stable and reproducible results within 1-2%.  相似文献   

14.
Determination of 238Pu in plutonium bearing fuels is required as a part of the chemical quality assurance of nuclear fuels. In addition, the determination of 238Pu is required in nuclear technology for many other applications, e.g., for developing isotope correlations and while using 238Pu as a spike (tracer) in isotope dilution α-spectrometry (IDAS). This determination usually involves the use of α-spectrometry on purified Pu sample. In view of the random errors associated with the counting statistics and the systematic errors due to (1) in-growth of 241Am in purified Pu sample and (2) tail contribution correction methodology in α-spectrometry, the precision and accuracy obtainable by α-spectrometry are limited. Thermal ionization mass spectrometry (TIMS) is generally used for the determination of different Pu isotopes other than 238Pu. This is due to the ubiquitous isobaric interference from 238U at 238Pu in TIMS. Recently, we have carried out studies on the formation of atomic and oxide ions of U and Pu by TIMS and developed a novel approach using interfering element correction methodology to account for the isobaric interference of 238U at 238Pu in TIMS. This methodology is based on the addition of 235U (enrichment >90 atom%) to Pu sample followed by the determination of 238U/235U atom ratio using UO+ ion and determination of Pu isotope ratios using Pu+ ion, from the same filament loading. The TIMS methodology was used for the determination of 238Pu in different Pu samples in U based nuclear fuels from PHWRs with 238Pu content about 0.2 atom%. The 238Pu determination was also carried out using α-spectrometry. This paper reports the results obtained by the two methods and presents the ments and shortcomings of the two approaches.  相似文献   

15.
The migration of 237Np in an undisturbed Chinese loess column was investigated by direct γ-ray method. The column was taken from a field test site and installed in a laboratory simulation hall. Radionuclide 237Np in the form of neptunium nitrate, mixed with quartz, was introduced into the column and covered with loess. Artificial rainfall was applied to the column for about 3 years and, the counting rates of 237Np in the column from 56 to 616 days at different vertical positions were detected with a γ-ray detection system. Based on the counting rates of 237Np in the simulation column at different vertical positions and the distance from the source layer, the relationship of the mass center of 237Np in the column at different experimental periods to the experimental time was established, C m = 0.36 log(t)-2.75. Here C m is the mass center of 237Np in the column, cm, and t is the experimental time in days. Based on this relationship, the mass center of 237Np for the 1,073-day experiment was predicted and compared to that obtained with the final destructive method. The good agreement between the prediction and the experimental values indicates that the direct γ-ray method could be used to predict the migration of strongly adsorbed radionuclides such as 237Np in environmental media with the help of laboratory simulation columns.  相似文献   

16.
A method that combines the use of non-destructive neutron activation analysis and high-resolution α spectrometry has been developed for determination of the activities of 234U and 238U in geological samples of low uranium content. The 238U content is determined by k0-based neutron activation analysis, whereas the 234U/238U relationship is measured by α spectrometry after isolation and electrodeposition of the uranium extracted from a lixiviation with 6 M HCl. The main advantage of the method is the simplicity of the chemical operations, including the fact that the steps destined to assure similar chemical state for the tracer and the uranium species present in the sample are not necessary. The method was applied to soil samples from sites of the North Peru Coast. Uranium concentration range 3–40 mg/kg and the isotopic composition correspond to natural uranium, with about 10% uncertainty.  相似文献   

17.
18.
A complete methodology for 226Ra and 228Ra determination by alpha-particle spectrometry in environmental samples is being applied in our laboratory using 225Ra as an isotopic tracer. This methodology can be considered highly suitable for the determination of these nuclides when very low absolute limits of detection need to be achieved. The 226Ra determination can be performed at any time after the isolation of the radium isotopes from the analyzed samples while the 228Ra determination needs to be carried out at least six months later through the measurement of one of its grand-daughters. The method has been validated by its application to samples with known concentrations of these Ra nuclides, and by comparison with other radiometric methods.  相似文献   

19.
The electron flux is measured using 238U targets detecting the (e, n) and (e, f) reactions for which the data are currently available only for low energies. The photon and photoneutrons contamination of the primary electron beam are estimated through Monte Carlo simulations using MCNP code. A mean flux 4.40 (±?0.95)?×?109 e cm?2 s?1 uniformly spreading over the irradiation filed is assessed. There is an acceptable agreement between the results corresponding to different nuclear reactions used. Therefore, the application of 238U (e, n) and (e, f) reactions as monitor-reference proves to be an improvement for further electron-disintegration studies.  相似文献   

20.
Radiotracers are extensively used in many industries for trouble shooting and optimization of process parameters leading to considerable savings in time and huge economic benefits. In chemical and petrochemical industries different gases and vapours flowing in the conversion reactors play a major role in the final production. Gaseous radiotracers are ideal to study hydrodynamics of gas phases in process vessels. 41Ar and 79Kr are the preferred gaseous radiotracers for such studies. Owing to the increase in demand from Indian industries for gas phase radiotracers, efforts have been made to produce 41Ar and 79Kr indigenously by irradiation of 40Ar and enriched 78Kr gaseous targets in research reactors. Prequalification of the containers used, safety aspects concerning accidental rupture and mandatory tests necessary for irradiation of gaseous targets in the reactors have been studied. The paper describes some of the important safety aspects involved and the results of trial irradiations on the production of 41Ar and 79Kr radiotracers. Standardization of suitable assay protocols for their regular production and supply for applications in industries is also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号