首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the title compound, [Cu2(C19H24N2O4)2(H2O)2]·2H2O, the asymmetric unit consists of one half of the bis{μ‐6,6′‐dimethoxy‐2,2′‐[propane‐1,2‐diylbis(iminomethylene)]diphenolato}bis[aquacopper(II)] complex and two water molecules. Two CuII centres are bridged through a pair of phenolate groups, resulting in a complex with a centrosymmetric structure, with the centre of inversion at the middle of the Cu2O2 plane. The Cu atoms are in a slightly distorted square‐pyramidal coordination environment (τ = 0.07). The average equatorial Cu—O bond length and the axial Cu—O bond length are 1.928 (3) and 2.486 (3) Å, respectively. The Cu—O(water) bond length is 2.865 (4) Å, so the compound could be described as having a weakly coordinating water molecule at each CuII ion and two solvent water molecules per dimetallic unit. The Cu...Cu distance and Cu—O—Cu angle are 3.0901 (10) Å and 87.56 (10)°, respectively. The molecules are linked into a sheet by O—H...O and C—H...O hydrogen bonds parallel to the [001] plane.  相似文献   

2.
The title compund, [Cu2(OH)2(C22H25N3)2](ClO4)2, is a copper(II) dimer, with two [CuL]2+ units [L is bis(6‐methyl‐2‐pyridylmethyl)(2‐phenylethyl)amine] bridged by hydroxide groups to define the {[CuL](μ‐OH)2[CuL]}2+ cation. Charge balance is provided by perchlorate counter‐anions. The cation has a crystallographic inversion centre halfway between the CuII ions, which are separated by 3.0161 (8) Å. The central core of the cation is an almost regular Cu2O2 parallelogram of sides 1.931 (2) and 1.935 (2) Å, with a Cu—O—Cu angle of 102.55 (11)°. The coordination geometry around each CuII centre can be best described as a square‐based pyramid, with three N atoms from L ligands and two hydroxide O atoms completing the coordination environment. Each cationic unit is hydrogen bonded to two perchlorate anions by means of hydroxide–perchlorate O—H...O interactions.  相似文献   

3.
In the title compound, [CuCl2(C9H12N2O)], the CuII atom is coordinated by two Cl anions and two N atoms of one O‐ethyl 3‐methyl­pyridine‐2‐carboximidic acid mol­ecule in a slightly distorted square‐planar geometry, with Cu—N distances of 2.0483 (17) and 1.9404 (18) Å, and Cu—Cl distances of 2.2805 (10) and 2.2275 (14) Å. In addition, each CuII atom is connected by one Cl anion and the CuII atom from a neighbouring mol­ecule, with Cu⋯Cl and Cu⋯Cu distances of 2.9098 (13) and 3.4022 (12) Å, respectively, and, therefore, a centrosymmetric dimer is formed. Adjacent mol­ecular dimers are connected by π–π stacking inter­actions between pyridine rings to form a zigzag mol­ecular chain. The mol­ecular chains are also enforced by N—H⋯Cl and C—H⋯Cl inter­actions.  相似文献   

4.
In the title compound, [Cu2Cl4(C6H10N8)2]n, the ligand has C2 symmetry, and the Cu and Cl atoms lie on a mirror plane. The coordination polyhedron of the Cu atom is a distorted square pyramid, with the basal positions occupied by two N atoms from two different ligands [Cu—N = 2.0407 (18) Å] and by the two Cl atoms [Cu—Cl = 2.2705 (8) and 2.2499 (9) Å], and the apical position occupied by a Cl atom [Cu—Cl = 2.8154 (9) Å] that belongs to the basal plane of a neighbouring Cu atom. The [CuCl2(C6H10N8)]2 units form infinite chains extending along the a axis via the Cl atoms. Intermolecular C—H⃛Cl contacts [C⃛Cl = 3.484 (2) Å] are also present in the chains. The chains are linked together by intermolecular C—H⃛N interactions [C⃛N = 3.314 (3) Å].  相似文献   

5.
In the crystal structure of the title compound, [Cu3Cl6(C4H6N4)4]n, there are three Cu atoms, six Cl atoms and four 2‐allyl­tetrazole ligands in the asymmetric unit. The polyhedron of one Cu atom adopts a flattened octahedral geometry, with two 2‐allyl­tetrazole ligands in the axial positions [Cu—N4 = 1.990 (2) and 1.991 (2) Å] and four Cl atoms in the equatorial positions [Cu—Cl = 2.4331 (9)–2.5426 (9) Å]. The polyhedra of the other two Cu atoms have a square‐pyramidal geometry, with three basal sites occupied by Cl atoms [Cu—Cl = 2.2487 (9)–2.3163 (8) and 2.2569 (9)–2.3034 (9) Å] and one basal site occupied by a 2‐allyl­tetrazole ligand [Cu—N4 = 2.028 (2) and 2.013 (2) Å]. A Cl atom lies in the apical position of either pyramid [Cu—Cl = 2.8360 (10) and 2.8046 (9) Å]. The possibility of including the tetrazole N3 atoms in the coordination sphere of the two Cu atoms is discussed. Neighbouring copper polyhedra share their edges with Cl atoms to form one‐dimensional polymeric chains running along the a axis.  相似文献   

6.
In the title dinuclear CuII compound, [Cu2Cl3(C19H19N3)3]ClO4·0.5H2O, the coordination geometry around the Cu atoms is square pyramidal, with the bridging Cl atom at the apical positions. The Cu—Cl—Cu angle is 136.9 (1)° and the Cu?Cu distance is 4.961 (1) Å.  相似文献   

7.
In the first title salt, [Cu(C12H8N2)2(C5H10N2Se)](ClO4)2, the CuII centre occupies a distorted trigonal–bipyramidal environment defined by four N donors from two 1,10‐phenanthroline (phen) ligands and by the Se donor of a 1,3‐dimethylimidazolidine‐2‐selone ligand, with the equatorial plane defined by the Se and by two N donors from different phen ligands and the axial sites occupied by the two remaining N donors, one from each phen ligand. The Cu—N distances span the range 1.980 (10)–2.114 (11) Å and the Cu—Se distance is 2.491 (3) Å. Intermolecular π–π contacts between imidazolidine rings and the central rings of phen ligands generate chains of cations. In the second salt, [Cu(C10H8N2)2(C3H6N2S)](ClO4)2, the CuII centre occupies a similar distorted trigonal–bipyramidal environment comprising four N donors from two 2,2′‐bipyridyl (bipy) ligands and an S donor from an imidazolidine‐2‐thione ligand. The equatorial plane is defined by the S donor and two N donors from different bipy ligands. The Cu—N distances span the range 1.984 (6)–2.069 (7) Å and the Cu—S distance is 2.366 (3) Å. Intermolecular π–π contacts between imidazolidine and pyridyl rings form chains of cations. A major difference between the two structures is due to the presence in the second complex of two N—H...O hydrogen bonds linking the imidazolidine N—H hydrogen‐bond donors to perchlorate O‐atom acceptors.  相似文献   

8.
The title compound, [4′‐(4‐bromophenyl)‐2,2′:6′,2′′‐terpyridine]chlorido(trifluoromethanesulfonato)copper(II), [Cu(CF3O3S)Cl(C21H14BrN3)], is a new copper complex containing a polypyridyl‐based ligand. The CuII centre is five‐coordinated in a square‐pyramidal manner by one substituted 2,2′:6′,2′′‐terpyridine ligand, one chloride ligand and a coordinated trifluoromethanesulfonate anion. The Cu—N bond lengths differ by 0.1 Å for the peripheral and central pyridine rings [2.032 (2) (mean) and 1.9345 (15) Å, respectively]. The presence of the trifluoromethanesulfonate anion coordinated to the metal centre allows Br...F halogen–halogen interactions, giving rise to the formation of a dimer about an inversion centre. This work also demonstrates that the rigidity of the ligand allows the formation of other types of nonclassical interactions (C—H...Cl and C—H...O), yielding a three‐dimensional network.  相似文献   

9.
In the title compound, [CuCl2(C11H15N3O2)], the CuII ion is five‐coordinated in a strongly distorted trigonal–bipyramidal arrangement, with the two methyl­oxime N atoms located in the apical positions, and the pyridine N and the Cl atoms located in the basal plane. The two axial Cu—N distances are almost equal (mean 2.098 Å) and are substantially longer than the equatorial Cu—N bond [1.9757 (15) Å]. It is observed that the N(oxime)—M—N(pyridine) bond angle for five‐membered chelate rings of 2,6‐diacetyl­pyridine dioxime complexes is inversely related to the magnitude of the M—N(pyridine) bond. The structure is stabilized by intra‐ and inter­molecular C—H⋯Cl hydrogen bonds which involve the methyl H atoms, except for one of the two acetyl­methyl groups.  相似文献   

10.
Compounds containing copper(I) are of interest for their role in biological processes. The nature of short (< ∼3.2 Å) Cu...Cu contacts within these compounds has been debated, being either described as weakly attractive (bonding) `cuprophilic' interactions, or simply as short metal–metal distances constrained by ligand geometry or largely ionic in nature. The title three‐dimensional Cu+‐containing coordination polymer, [Cu3(C7H7N2O2)Cl2]n, was formed from the in situ reduction of CuCl2 in the presence of 3,5‐diaminobenzoic acid and KOH under hydrothermal conditions. Its complex crystal structure contains ten distinct CuI atoms, two of which lie on crystallographic inversion centres. The copper coordination geometries include near‐linear CuOCl and CuN2, T‐shaped CuOCl2 and distorted tetrahedral CuOCl3 groups. Each CuI atom is also associated with two adjacent metal atoms, with Cu...Cu distances varying from 2.7350 (14) to 3.2142 (13) Å; if all these are regarded as `cuprophilic' interactions, then infinite [01] zigzag chains of CuI atoms occur in the crystal. The structure is consolidated by N—H...Cl hydrogen bonds.  相似文献   

11.
The crystal structure of the title compound, [Cu(ClO4)2(C4H12N2)2], (I), is reported at 100, 250 and 400 K. The CuII cation in this complex is coordinated in a distorted octahedral mode characteristic of Jahn–Teller systems. The coordination of the perchlorate ligands via longer, and presumably weaker, axial Cu—O distances varies significantly as a function of temperature. One of the Cu—O distances increases between 100 and 250 K, and one of the Cu—O—Cl angles expands between 250 and 400 K. At all temperatures, the complex forms a two‐dimensional N—H...O hydrogen‐bond network in the (001) plane.  相似文献   

12.
In the structure of the title compound, [Ir2Cl3H2(C36H28P2)2]BF4·2CH2Cl2, the bimetallic cation features a confacial bioctahedral structure that is held together by three bridging chloride ions and is very close to C2 symmetric. The hydrides are in a syn orientation (trans to the same halide bridge), and the chelating bis(phosphine) atropisomers display a racemic (R,R)/(S,S) configuration. Because of the high trans‐bond‐weakening influence of the hydride ligands, the Ir—Cl bonds trans to Ir—H [2.5262 (7) and 2.5365 (7) Å] are significantly longer than those opposite the Ir—P linkages [2.4287 (7)–2.4672 (8) Å]. The Ir—P distances vary between 2.2464 (9) and 2.2565 (8) Å. This study illustrates the usefulness of sterically demanding biaryl‐based P2 ligands in the synthesis of halide‐bridged Ir2 complexes, which are valuable precursors of versatile catalysts for homogeneous C=O hydrogenation.  相似文献   

13.
The title compound, [Ti2Cl6(C2H6N)2(C2H7N)2], is a binuclear octahedral complex lying about an inversion centre. There are four different chloride environments, two terminal [Ti—Cl = 2.2847 (5) and 2.3371 (5) Å] and two bridging [Ti—Cl = 2.4414 (5) and 2.6759 (5) Å], with the Ti—Cl distances being strongly influenced by both the ligand trans to the chloride and whether or not the chloride anion is bridging between the two TiIV centres. The compound forms a two‐dimensional network in the solid state, with weak intermolecular C—H...Cl interactions giving rise to a planar network in the (10) plane.  相似文献   

14.
Transition metal complexes of Schiff base ligands have been shown to have particular application in catalysis and magnetism. The chemistry of copper complexes is of interest owing to their importance in biological and industrial processes. The reaction of copper(I) chloride with the bidentate Schiff base N,N′‐bis(trans‐2‐nitrocinnamaldehyde)ethylenediamine {Nca2en, systematic name: (1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]} in a 1:1 molar ratio in dichloromethane without exclusion of air or moisture resulted in the formation of the title complex μ‐chlorido‐μ‐hydroxido‐bis(chlorido{(1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]‐κ2N,N′}copper(II)) dichloromethane sesquisolvate, [Cu2Cl3(OH)(C20H18N4O4)2]·1.5CH2Cl2. The dinuclear complex has a folded four‐membered ring in an unsymmetrical Cu2OCl3 core in which the approximate trigonal bipyramidal coordination displays different angular distortions in the equatorial planes of the two CuII atoms; the chloride bridge is asymmetric, but the hydroxide bridge is symmetric. The chelate rings of the two Nca2en ligands have different conformations, leading to a more marked bowing of one of the ligands compared with the other. This is the first reported dinuclear complex, and the first five‐coordinate complex, of the Nca2en Schiff base ligand. Molecules of the dimer are associated in pairs by ring‐stacking interactions supported by C—H…Cl interactions with solvent molecules; a further ring‐stacking interaction exists between the two Schiff base ligands of each molecule.  相似文献   

15.
The title compound, [Cu(C9H5N2O3)2(C2H6OS)2], consists of octahedrally coordinated CuII ions, with the 3‐oxo‐3,4‐dihydroquinoxaline‐2‐carboxylate ligands acting in a bidentate manner [Cu—O = 1.9116 (14) Å and Cu—N = 2.1191 (16) Å] and a dimethyl sulfoxide (DMSO) molecule coordinated axially via the O atom [Cu—O = 2.336 (5) and 2.418 (7) Å for the major and minor disorder components, respectively]. The whole DMSO molecule exhibits positional disorder [0.62 (1):0.38 (1)]. The octahedron around the CuII atom, which lies on an inversion centre, is elongated in the axial direction, exhibiting a Jahn–Teller effect. The ligand exhibits tautomerization by H‐atom transfer from the hydroxyl group at position 3 to the N atom at position 4 of the quinoxaline ring of the ligand. The complex molecules are linked through an intermolecular N—H...O hydrogen bond [N...O = 2.838 (2) Å] formed between the quinoxaline NH group and a carboxylate O atom, and by a weak intermolecular C—H...O hydrogen bond [3.392 (11) Å] formed between a carboxylate O atom and a methyl C atom of the DMSO ligand. There is a weak intramolecular C—H...O hydrogen bond [3.065 (3) Å] formed between a benzene CH group and a carboxylate O atom.  相似文献   

16.
The title complex, [Cu(C12H9N2O)(C2H3O2)(C12H10N2O)], is a neutral CuII complex with a primary N3O2 coordination sphere. The Cu centre coordinates to both a deprotonated and a neutral molecule of N‐phenylpyridine‐2‐carboxamide and also to an acetate anion. The coordination around the metal centre is asymmetric, the deprotonated ligand providing two N donor atoms [Cu—N = 1.995 (2) and 2.013 (2) Å] and the neutral ligand providing one N and one O donor atom to the coordination environment [Cu—N = 2.042 (2) Å and Cu—O = 2.2557 (19) Å], the fifth donor being an O atom of the acetate ion [Cu—O = 1.9534 (19) Å]. The remaining O atom from the acetate ion can be considered as a weak donor atom [Cu—O = 2.789 (2) Å], conferring to the Cu complex an asymmetric octahedral geometry. The crystal structure is stabilized by intermolecular N—H...O, C—H...O and C—H...π interactions.  相似文献   

17.
In the title complex, [Cu(C16H16Cl3N3O2P)Cl(C12H8N2)], the CuII cation presents a square‐pyramidal environment, where the CuO2N2 base is formed by two O atoms from carbonyl and phosphoryl groups, and by two N atoms from a 1,10‐phenanthroline molecule. A coordinated Cl atom occupies the apex. N—H...Cl hydrogen bonds link the molecules into one‐dimensional chains. The trichloromethyl group is rotationally disordered over two positions, with occupancies of 0.747 (7) and 0.253 (7).  相似文献   

18.
In the title molecular complex, [Cu4Cl6O(2‐EtTz)4], where 2‐EtTz is 2‐ethyl­tetrazole (C3H6N4), the central O atom is located on the symmetry site and is tetrahedrally coordinated to four Cu atoms, with Cu—O distances of 1.8966 (4) Å. A very slight distortion of Cu4O from a regular tetrahedron is observed [two Cu—O—Cu angles are 108.76 (3)° and four others are 109.828 (13)°]. Each Cu atom is connected to three others via the Cl atoms, forming a slightly distorted Cl octahedron around the O atom, with O⋯Cl distances of 2.9265 (7) Å for Cl atoms lying on the twofold axis and 2.9441 (13) Å for those in general positions. The Cu atom has a distorted trigonal–bipyramidal environment, with three Cl atoms in the equatorial plane, and with the N atom of the 2‐ethyl­tetrazole ligand and the μ4‐O atom in axial positions. The Cu atom is displaced out of the equatorial plane by ca 0.91 Å towards the coordinated N atom of the 2‐­ethyl­tetrazole ligand.  相似文献   

19.
The title dimeric complex, bis{μ‐2,2′‐[hexane‐1,6‐diyl­bis(nitrilo­methyl­idyne)]­diphenolato‐1:2κ4O,N:N′,O′}dicopper(II),[Cu2(C20H22N2O2)2], has been investigated by single‐crystal X‐ray diffraction, by thermogravimetric analysis and differential scanning calorimetry, and also by FT–IR spectroscopy. Different synthetic and crystallization procedures gave crystals which were quite different in appearance, and it was initially thought that these were different polymorphic forms. Subsequent structure determination showed, in fact, serendipitous preparation of crystals in the P41 space group by one method and in space group P43 by the other. In these enantiomorphic structures, the Cu atoms have a distorted flattened tetrahedral coordination, with Cu—N and Cu—O distances in the ranges 1.954 (4)–1.983 (4) and 1.887 (4)–1.903 (4) Å, respectively.  相似文献   

20.
The title compound, [Cu4Cl6O(C4H7NS)4], was obtained by the reaction of CuCl2·2H2O with 2‐methyl‐2‐thia­zoline in methanol. The complex has twofold crystallographic symmetry and contains a tetrahedron of four CuII atoms coordinating a central μ4‐O atom, with the six edges of the tetrahedron bridged by Cl atoms. Distance ranges are Cu—O 1.917 (4)–1.920 (4) and Cu—Cl 2.370 (2)–2.445 (2) Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号