首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Electroanalysis》2017,29(2):538-547
A few novel metal complexes of chelidonic acid (chelH2), namely [Ca(chel)(H2O)3] ( 1 ), [Cu(chel)(H2O)5] ⋅ 2H2O ( 2 ) and [VO(chel)(H2O)3] ⋅ 2H2O ( 3 ) were prepared, identified by elemental analysis and characterized by electrochemical methods. IR‐spectra and thermal stability in solid state are discussed as well. The electrochemical characteristics of the free chelidonic acid and its complexes 1 – 3 were studied by (cyclic) square‐wave voltammetry, on static mercury drop electrode (SMDE) and paraffin‐impregnated graphite electrode (PIGE), in aqueous media over a wide pH range. The reduction of chelidonic acid on SMDE is a kinetically controlled electrode reaction, occurring with the transfer of one electron and two protons for 1<pH<6, whereas in very alkaline media the electron transfer is pH independent, i.e . the mechanism of electro‐reduction of chelH2 is proposed. The experimental parameters of the electroanalytical procedure were optimized and the method was applied for the investigation of the metal ion coordination preferences toward chelidonic acid. For the direct determination of solid complexes 1 – 3 , SW voltammetry of microparticles was used.  相似文献   

2.
3.
Ion exchange chelation chromatography is an effective means to extract metals from coordination complexes and biological samples; however there is a lack of data to verify the nature of metal complexes that can be successfully analysed using such a procedure. The aim of this study was to assess the capability of pyridine 2,6‐dicarboxylic acid (PDCA) to extract and quantify Ga(III) from a range of environments using standard liquid chromatography apparatus. The PDCA chelation method generated a single Ga(III) peak with a retention time of 2.55 ± 0.02 min, a precision of <2% and a limit of detection of 110 μM. Ga(III) hydroxide complexes (highest stability constant 15.66) were used to successfully cross‐validate the chelation method with inductively coupled plasma mass spectrometry. The PDCA assay extracted 96.9 ± 1.2% of the spiked Ga(III) from porcine mucus and 100.7 ± 2.7% from a citrate complex (stability constant 10.02), but only ca 50% from an EDTA complex (stability constant 22.01). These data suggest that PDCA chelation can be considered a suitable alternative to inductively coupled plasma mass spectrometry for Ga(III) quantification from all but the most strongly bound coordinated complexes i.e. a stability constant of <15. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
In the title complex, {[Cu(C6H5O3)Cl(H2O)]·H2O}n, the CuII atom has a deformed square‐pyramidal coordination geometry formed by two O atoms of the maltolate ligand, two bridging Cl atoms and the coordinated water O atom. The Cu atoms are bridged by Cl atoms to form a polymeric chain. The deprotonated hydroxyl and ketone O atoms of the maltolate ligand form a five‐membered chelate ring with the Cu atom. Stacking interactions and hydrogen bonds exist in the crystal.  相似文献   

5.
The crystal structures of the title iron(III) and aluminium(III) ethyl maltolate complexes, [Fe(C7H7O3)3] and [Al(C7H7O3)3], respectively, are isomorphous. In each case, the three bidentate ligand mol­ecules are bound to the metal atom, forming a distorted octahedral coordination geometry in a fac configuration.  相似文献   

6.
The title compounds, bis­(pyridine‐2,6‐di­carboxyl­ato‐N,O,O′)copper(II) monohydrate, [Cu(C7H4NO4)2]·H2O, andbis(pyridine‐2,6‐dicarboxylato‐N,O,O′)zinc(II) trihydrate, [Zn(C7H4NO4)2]·3H2O, have distorted octahedral geometries about the metal centres. Both metal ions are bonded to four O atoms and two pyridyl‐N atoms from the two terdentate ligand mol­ecules, which are nearly perpendicular to each other. The copper(II) complex has twofold crystallographic symmetry and contains two different ligand mol­ecules, one of which is neutral and another doubly ionized. In contrast, the zinc(II) complex contains two identical singly ionized ligand mol­ecules. Both crystal structures are stabilized by O—H?O intermolecular hydrogen bonds between the complex and the water mol­ecules.  相似文献   

7.
Dialkylammonium dicyano(7‐methyl‐6‐oxo‐6H‐dibenzo[b,d]pyran‐9‐yl)methanides 4a – 4j are obtained in good yields via a simple reaction between 3‐acetylcoumarins (=3‐acetyl‐2H‐1‐benzopyran‐2‐ones) 1 and malononitrile ( 2 ) in EtOH (Table 1). In this reaction, a charge‐separated zwitterionic salt is formed.  相似文献   

8.
Poly(pyridine ether)s were prepared in two ways: the polycondensation of silylated 1,1,1‐tris(4‐hydroxyphenyl)ethane (THPE) with 2,6‐difluoropyridine (method A) and the polycondensation of free THPE with 2,6‐dichloropyridine (method B). With method A, the THPE/difluoropyridine feed ratio was varied from 1.0:1.0 to 1.0:1.6. Cycles, bicycles, and multicycles were the main reaction products, and crosslinking was never observed. When ideal stoichiometry was used exclusively, multicycles free of functional groups were obtained. These multicycles were detectable in matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectra up to B38C76 with a mass of approximately 32,000 Da. With method B, the reaction conditions were varied at a fixed feed ratio to achieve an optimum for the preparation of multicyclic polyethers, but because of the lower reactivity of 2,6‐dichloropyridine, a quantitative conversion was not achieved. The reaction products were characterized with MALDI‐TOF mass spectrometry, viscosity measurements, and size exclusion chromatography. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5725–5735, 2004  相似文献   

9.
Three‐component reactions of 5,6‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinoline‐1,2‐dione with malononitrile, or ethyl cyanoacetate, and cyclic six‐membered or a five‐membered 1,3‐diketone, produce spiro[4H‐pyran‐3,3′‐oxindoles].  相似文献   

10.
Piano‐stool ([(p‐cymene)Ru(thz)Cl], 2 ) and six‐coordinated ([Ru(thz)2(PPh3)2], 3 ) ruthenium complexes derived from 2‐phenylthiazoline‐4‐carboxylic acid (Hthz, 1 ) were synthesized for the first time, and fully characterized using conventional methods. Also, the molecular structure of complex 3 was determined using X‐ray analysis. These complexes were evaluated as catalysts for transfer hydrogenation of carbonyl compounds in the presence of isopropyl alcohol and KOtBu. Complex 2 was found to be more active than 3 in transfer hydrogenation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The crystal structure of catena‐poly­[[(6‐carboxy­pyridine‐2‐carb­oxyl­ato‐κ3O,N,O′)­lithium(I)]‐μ‐aqua‐κ2O:O], [Li(C7H4NO4)­(H2O)]n, contains the Li+ ion coordinated to two O atoms and the N atom of the 6‐carboxy­pyridine‐2‐carboxyl­ate ligand, and to two water O atoms, forming a pentavalent coordination geometry. The molecule resides on a mirror plane which contains the Li and N atoms, the para‐CH unit, and the O atom of the coordinated water mol­ecule. The O atom of the water mol­ecule is coordinated to two Li atoms, forming an infinite polymeric chain.  相似文献   

12.
The metal‐organic framework {[Zn2(CAM)(μ2‐OH)(bpp)] · 2H2O}n ( 1 ) [H3CAM = 4‐hydroxypyridine‐2,6‐dicarboxylic acid, bpp = 1,3‐bis(4‐pyridyl)propane], was hydrothermally synthesized and characterized by elemental analyses, infrared spectroscopy, and single‐crystal X‐ray diffraction. Compound 1 presents a three dimensional self‐penetrating 8‐connected framework with the Schläfli symbol 420.53.65. In addition, the fluorescent properties and thermal stability of 1 were discussed as well.  相似文献   

13.
The title compound, [Co(H2O)6](C16H11O7S)2·4H2O, with cobalt(II) at the centre of symmetry, exhibits alternating hydrophilic and hydrophobic regions. Hydrophilic regions are generated by O—H...O hydrogen bonds among sulfonate groups, involving solvent water molecules and coordinated water molecules; π–π stacking interactions assemble the flavone skeletons into columns which form the hydrophobic regions. A three‐dimensional network is built up from an extensive array of hydrogen bonds, π–π stacking interactions and electrostatic interactions between the cation and anion. As a salt of the sulfonated derivative of naturally occurring tectochrysin (5‐hydroxy‐7‐methoxyflavone), this compound offers enhanced solubility and potential biological activity over the natural product.  相似文献   

14.
The structure of pyridine‐2,6‐di­carboxyl­ic acid, C7H5NO4, has been determined at 0.71 Å resolution. The mol­ecule is located on a site with mirror symmetry. A one‐dimensional supra­molecular structure is stabilized in the solid state through a strong symmetric double hydrogen bond, with H?O distances of 1.86 (3) Å and O—H?O angles of 167 (3) and 171 (5)°. This arrangement is similar but not identical to that reported for the isoelectronic isophthalic acid (benzene‐1,3‐di­carboxyl­ic acid).  相似文献   

15.
Two new coordination complexes based on benzimidazole dicarboxylic acid, Zn(Hbidc)?H2O ( 1 ) and Cd(Hbidc)(H2O) ( 2 ), have been synthesized under hydrothermal conditions. The complexes were characterized using elemental analysis, infrared and UV–visible spectroscopies, powder X‐ray diffraction, thermogravimetry and single‐crystal X‐ray diffraction. Structural analyses showed that the crystal structures of 1 and 2 are different, due to the various modes of linking of the benzimidazole dicarboxylic acid. Complex 1 has a two‐dimensional network structure and 2 has a three‐dimensional network structure. In addition, we studied the performance of the fluorescence response of two complexes. Results showed that the complexes can be used as chemical sensors for multifunctional testing, such as for UO22+, xanthine and Fe3+ ions. Even if the concentration is very low, they could also be detected, showing that coordination complexes 1 and 2 have very high fluorescence sensitivity. The detection limit for UO22+ is 5.42 nM ( 1 ) and 0.02 nM ( 2 ), that for xanthine is 1.37 nM ( 1 ) and 0.28 nM ( 2 ), and that for Fe3+ ions is 0.76 nM ( 1 ) and 0.62 nM ( 2 ).  相似文献   

16.
Reaction 6H‐pyrrolo[3,2,1‐de ]acridine‐1,2‐dione ( 7 ) with cyclic 1,3‐dicarbonyl compounds in the presence of malononitrile or ethyl cyanoacetate generates spiro[4H‐pyran‐3,3′‐oxindoles] 8 .  相似文献   

17.
18.
The Chemistry and application of the title aldehyde and some simple derivatives thereof are reviewed.  相似文献   

19.
Two novel Schiff base ligands (La and Lb) were prepared from the condensation of quinoline 2‐aldehyde with 2‐aminopyridine (ligand La) and from the condensation of oxamide with furfural (ligand Lb). Mixed ligand complexes of the type M+2La/b Lc were prepared, where (La and Lb) the primary ligands and Lc was 2,6‐pyridinedicarboxylic acid as secondary ligand. Metal ions used were Fe(II), Co(II), Ni(II) and Zn(II) for mixed ligands La Lc and Fe(II), Co(II), Ni(II), Cu(II), Hg(II) and Zn(II) for LbLc mixed ligands. La and Lb Schiff base ligands were both characterized using elemental analyses, molar conductance, IR, 1H and 13C NMR. Mass spectra for Lb, [Zn(La)LcCl]Cl and [Cu(Lb)LcCl]Cl were also studied. ESR spectrum of the [Cu(Lb) LcCl]Cl complex was also recorded The metal complexes were synthesized and characterized using elemental analyses, spectroscopic (IR, 1H NMR, UV‐visible, diffused reflectance), molar conductance, magnetic moment and thermal studies. The IR and 1H NMR spectral data revealed that 2,6‐pyridinedicarboxalic acid ligand coordinated to the metal ions via pyridyl N and carboxylate O without proton displacement. In addition, the IR data showed that La and Lb ligands behaved as neutral bidentate ligands with N2 donation sites (quinoline N and azomethine N for La and two azomethine N for Lb). Based on spectroscopic studies, an octahedral geometry was proposed for the complexes. The thermal stability and degradation of the metal complexes were investigated by thermogravimetric analysis. The binding modes and affinities of La, Lb and Zn(II) complexes towards receptors of crystal structure of E. coli (PDB ID: 3 t88) and mutant oxidoreductase of breast cancer (PDB ID: 3 hb5) receptors were also studied. The antimicrobial activity against two species of Gram positive, Gram negative bacteria and fungi were tested for the Schiff base ligands, 2,6‐pyridinedicarboxylic acid and the mixed ligand complexes and revealed that the synthesized mixed ligand complexes exhibited higher antimicrobial activity than their free Schiff base ligands.  相似文献   

20.
On irradiation (350 nm) in benzene solution, dihydropyranone 3 affords predominantly (75%) the cis‐anti‐cis HH‐dimer 4 , but in smaller amounts (12%) also dimer 5 , wherein one of the six‐membered rings is trans‐fused to the (central) cyclobutane ring. The constitution and configuration of 5 was fully elucidated by NMR‐analysis. On contact with SiO2, 5 isomerizes quantitatively to the cis‐anti‐cis HT‐dimer 7 , the structure of which was established by X‐ray crystal‐structure determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号