首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystallization of 2‐amino‐4‐chloro‐6‐morpholino­pyrimidine, C8H11ClN4O, (I), yields two polymorphs, both with space group P21/c, having Z′ = 1 (from diethyl ether solution) and Z′ = 2 (from di­chloro­methane solution), denoted (Ia) and (Ib), respectively. In polymorph (Ia), the mol­ecules are linked by an N—H⋯O and an N—H⋯N hydrogen bond into sheets built from alternating R(8) and R(40) rings. In polymorph (Ib), one mol­ecule acts as a triple acceptor of hydrogen bonds and the other acts as a single acceptor; one N—H⋯O and three N—H⋯N hydrogen bonds link the mol­ecules in a complex chain containing two types of R(8) and one type of R(18) ring. 2‐Amino‐4‐chloro‐6‐piperidino­pyrimidine, C9H13ClN4, (II), which is isomorphous with polymorph (Ib), also has Z′ = 2 in P21/c, and the mol­ecules are linked by three N—­H⋯N hydrogen bonds into a centrosymmetric four‐mol­ecule aggregate containing three R(8) rings.  相似文献   

2.
In ethyl N‐[2‐(hydroxy­acetyl)phenyl]carbamate, C11H13NO4, all of the non‐H atoms lie on a mirror plane in the space group Pnma; the mol­ecules are linked into simple chains by a single C—H⋯O hydrogen bond. The mol­ecules of ethyl N‐[2‐(hydroxy­acetyl)‐4‐iodo­phenyl]carbamate, C11H12INO4, are linked into sheets by a combination of O—H⋯I and C—H⋯O hydrogen bonds and a dipolar I⋯O contact. Ethyl N‐­[2‐(hydroxy­acetyl)‐4‐methyl­phenyl]carbamate, C12H15NO4, crystallizes with Z′ = 2 in the space group P; pairs of mol­ecules are weakly linked by an O—H⋯O hydrogen bond and these aggregates are linked into chains by two independent aromatic π–π stacking inter­actions.  相似文献   

3.
In strychninium 4‐chloro­benzoate, C21H23N2O2+·C7H4ClO2, (I), and strychninium 4‐nitro­benzoate, C21H23N2O2+·C7H4NO4, (II), the strychninium cations form pillars stabilized by C—H⋯O and C—H⋯π hydrogen bonds. Channels between the pillars are occupied by anions linked to one another by C—H⋯π hydrogen bonds. The cations and anions are linked by ionic N—H+⋯O and C—H⋯X hydrogen bonds, where X = O, π and Cl in (I), and O and π in (II).  相似文献   

4.
In 2‐amino‐4,6‐di­methoxy‐5‐nitro­pyrimidine, C6H8N4O4, the mol­ecules are linked by one N—H⋯N and one N—H⋯O hydrogen bond to form sheets built from alternating R(8) and R(32) rings. In isomeric 4‐amino‐2,6‐di­methoxy‐5‐nitro­pyrimidine, C6H8N4O4, which crystallizes with Z′ = 2 in P, the two independent mol­ecules are linked into a dimer by two independent N—H⋯N hydrogen bonds. These dimers are linked into sheets by a combination of two‐centre C—H⋯O and three‐centre C—H⋯(O)2 hydrogen bonds, and the sheets are further linked by two independent aromatic π–π‐stacking interactions to form a three‐dimensional structure.  相似文献   

5.
The title compounds, both C23H21ClN2OS, are isomeric, with (I) and (II) being the N‐3‐methyl­phenyl and N‐2‐methyl­phenyl derivatives, respectively. The dihedral angle between the 4‐chloro­phenyl group and the thio­phene ring in (II) [38.1 (1)°] is larger than that in (I) [7.1 (1)°], indicating steric repulsion between the chloro­phenyl and o‐toluidine groups in (II). In both compounds, an intramolecular N—H⋯N hydrogen bond forms a pseudo‐six‐membered ring, thus locking the molecular conformation. In the crystal structures, mol­ecules are connected via N—H⋯O hydrogen bonds, forming chains along the b axis in (I) and along the c axis in (II). Intermolecular C—H⋯O/S and π–π interactions are also observed in (II), but not in (I).  相似文献   

6.
The geometries of the thia­zole ring and the nitr­amino groups in N‐(3H‐thia­zol‐2‐yl­idene)­nitr­amine, C3H3N3O2S, (I), and N‐­methyl‐N‐(thia­zol‐2‐yl)­nitr­amine, C4H5N3O2S, (II), are very similar. The nitr­amine group in (II) is planar and twisted along the C—N bond with respect to the thia­zole ring. In both structures, the asymmetric unit includes two practically equal mol­ecules. In (I), the mol­ecules are arranged in layers connected to each other by N—H⋯N and much weaker C—H⋯O hydrogen bonds. In the crystal structure of (II), the mol­ecules are arranged in layers bound to each other by both weak C—H⋯O hydrogen bonds and S⋯O dipolar interactions.  相似文献   

7.
The structures of the three title isomers, namely 4‐(2‐methyl­anilino)pyridine‐3‐sulfonamide, (I), 4‐(3‐methyl­anilino)pyridine‐3‐sulfonamide, (II), and 4‐(4‐methyl­anilino)pyridine‐3‐sulfonamide, (III), all C12H13N3O2S, differ in their hydrogen‐bonding arrangements. In all three mol­ecules, the conformation of the 4‐amino­pyridine‐3‐sulfon­amide moiety is conserved by an intra­molecular N—H⋯O hydrogen bond and a C—H⋯O inter­action. In the supra­mol­ecular structures of all three isomers, similar C(6) chains are formed via inter­molecular N—H⋯N hydrogen bonds. N—H⋯O hydrogen bonds lead to C(4) chains in (I), and to R22(8) centrosymmetric dimers in (II) and (III). In each isomer, the overall effect of all hydrogen bonds is to form layer structures.  相似文献   

8.
The tris­(1H‐benzimidazol‐2‐yl­meth­yl)­amine (ntb) mol­ecule crystallizes in different solvent systems, resulting in two kinds of adduct, namely the monohydrate, C24H21N7·H2O or ntb·H2O, (I), and the acetonitrile–methanol–water (1/0.5/1.5) solvate, C24H21N7·C2H3N·0.5CH4O·1.5H2O or ntb·1.5H2O·0.5MeOH·MeCN, (II). In both cases, ntb adopts a tripodal mode to form hydrogen bonds with a solvent water mol­ecule via two N—H⋯O and one O—H⋯N hydrogen bond. In (I), the ntb·H2O adduct is further assembled into a two‐dimensional network by N—H⋯N and O—H⋯N hydrogen bonds, while in (II), a double‐stranded one‐dimensional chain structure is assembled via N—H⋯O and O—H⋯O hydrogen bonds, with the acetonitrile mol­ecules located inside the cavities of the chain structure.  相似文献   

9.
The title compounds, both [Fe(C5H5)(C15H14NO2)], crystallize with Z′ = 2 in the centrosymmetric space group P. In each compound, there is an intra­molecular N—H⋯O=C hydrogen bond, and pairs of inter­molecular O—H⋯O=C hydrogen bonds link the mol­ecules into chains, parallel to [10] in the 3‐hydr­oxy compound and parallel to [10] in the 4‐hydr­oxy compound.  相似文献   

10.
The structures of three compounds with potential anti­malarial activity are reported. In N,N‐diethyl‐N′‐(7‐iodo­quinolin‐4‐yl)ethane‐1,2‐diamine, C15H20IN3, (I), the mol­ecules are linked into ribbons by N—H⋯N and C—H⋯N hydrogen bonds. In N‐(7‐bromo­quinolin‐4‐yl)‐N′,N′‐diethyl­ethane‐1,2‐diamine dihydrate, C15H20BrN3·2H2O, (II), two amino­quino­line mol­ecules and four water mol­ecules form an R54(13) hydrogen‐bonded ring which links to its neighbours to form a T5(2) one‐dimensional infinite tape with pendant hydrogen bonds to the amino­quinolines. The phosphate salt 7‐chloro‐4‐[2‐(diethyl­ammonio)ethyl­amino]quinolinium bis­(dihydrogen­phosphate) phospho­ric acid, C15H22ClN32+·2H2PO4·H3PO4, (III), was prepared in order to establish the protonation sites of these compounds. The phosphate ions form a two‐dimensional hydrogen‐bonded sheet, while the amino­quino­line cations are linked to the phosphates by N—H⋯O hydrogen bonds from each of their three N atoms. While the conformation of the quinoline region hardly varies between (I), (II) and (III), the amino side chain is much more flexible and adopts a significantly different conformation in each case. Aromatic π–π stacking inter­actions are the only supramolecular inter­actions seen in all three structures.  相似文献   

11.
The structures of N‐ethyl‐3‐(4‐fluoro­phen­yl)‐5‐(4‐methoxy­phen­yl)‐2‐pyrazoline‐1‐thio­carboxamide, C19H20FN3OS, (I), and 3‐(4‐fluoro­phen­yl)‐N‐methyl‐5‐(4‐methyl­phen­yl)‐2‐pyrazoline‐1‐thio­carboxamide, C18H18FN3S, (II), have similar geometric parameters. The meth­oxy/methyl‐substituted phenyl groups are almost perpendicular to the pyrazoline (pyraz) ring [inter­planar angles of 89.29 (8) and 80.39 (10)° for (I) and (II), respectively], which is coplanar with the fluoro­phenyl ring [inter­planar angles of 5.72 (9) and 10.48 (10)°]. The pyrazoline ring approximates an envelope conformation in both structures, with the two‐coordinate N atom involved in an intra­molecular N—H⋯Npyraz inter­action. In (I), N—H⋯O and C—H⋯S inter­molecular hydrogen bonds are the primary inter­actions, whereas in (II), there are no intermolecular hydrogen bonds.  相似文献   

12.
Two structural isomers, 3,6‐bis(2‐chloro­phenyl)‐1,4‐di­hydro‐1,2,4,5‐tetrazine, (I), and 3,5‐bis(2‐chloro­phenyl)‐4‐amino‐1H‐1,2,4‐triazole, (II), both C14H10Cl2N4, form chain‐like structures in the solid state, stabilized by N—H⋯N and N—H⋯Cl hydrogen bonds. A contribution from weak interactions to the strong hydrogen‐bond network is observed in both structures. The secondary graph sets for intermolecular hydrogen bonds [(11) for (I) and (12) for (II)] indicate the similarity between the networks.  相似文献   

13.
Bis(1,3‐thia­zolidine‐2‐thione‐κS2)gold(I) bis­(4‐chloro­benzene­sulfonyl)amide, [Au(C3H5NS2)2](C12H8Cl2NS2O4), has no imposed symmetry. Classical N—H⋯N and N—H⋯O hydrogen bonds link the residues to form chains parallel to the b axis. Weaker inter­actions involve C—H⋯O, C—H⋯Au and a number of X⋯Cl contacts (X = Cl, S or Au) clustered in the region y ≃ . In bis­(1‐methyl­imidazolidine‐2‐thione‐κS2)gold(I) bis­(4‐iodo­benzene­sulfonyl)amide, [Au(C4H8N2S)2](C12H8I2NS2O4), the Au atom of the cation and the N atom of the anion lie on the twofold axis (0, y, ) in the space group C2/c. The formula unit forms a self‐contained ring with two symmetry‐equivalent N—H⋯O hydrogen bonds, and weak C—H⋯X (X = O, I or S), Au⋯I and I⋯I contacts are observed. In both compounds, the anions display extended conformations.  相似文献   

14.
In the title compounds, trans‐[PtI2(C11H14N2OS)2], (I), and trans‐[PtBr2(C11H14N2OS)2], (II), respectively, intramolecular N—H⋯O (propyl­amine side) hydrogen bonds in the potentially bidentate thio­urea ligands lock the carbonyl O atoms into six‐membered rings, determining the S‐mono­dentate mode of coordination of these ligands. Intramolecular N—H⋯X (X is I or Br) interactions (benzoyl­amine side) lead to slight distortions of the PtII coordination spheres from ideal square‐planar geometry. The PtII ion is located on an inversion centre in both structures.  相似文献   

15.
The title compounds, C8H10O2, (I), and C12H14O2, (II), occurred as by‐products in the controlled synthesis of a series of bis­(gem‐alkynols), prepared as part of an extensive study of synthon formation in simple gem‐alkynol derivatives. The two 4‐(gem‐alkynol)‐1‐ones crystallize in space group P21/c, (I) with Z′ = 1 and (II) with Z′ = 2. Both structures are dominated by O—H?O=C hydrogen bonds, which form simple chains in the cyclo­hexane derivative, (I), and centrosymmetric dimers, of both symmetry‐independent mol­ecules, in the cyclo­hexa‐2,5‐diene, (II). These strong synthons are further stabilized by C[triple‐bond]C—H?O=C, Cmethylene—H?O(H) and Cmethyl—H?O(H) interactions. The direct intermolecular interactions between donors and acceptors in the gem‐alkynol group, which characterize the bis­(gem‐alkynol) analogues of (I) and (II), are not present in the ketone derivatives studied here.  相似文献   

16.
The carboxyl­ic acid group and the double bond are coplanar in (E)‐3‐(benzoxazol‐2‐yl)­prop‐2‐enoic acid, C10H7NO3, whereas in isomeric (Z)‐3‐(benzoxazol‐2‐yl)­prop‐2‐enoic acid, also C10H7NO3, they are almost orthogonal. In both isomers, a strong O—H⋯N hydrogen bond, with the carboxyl­ic acid group as a donor and the pyridine‐like N atom as an acceptor, and weak C—H⋯O interactions contribute to the observed supramolecular structures, which are completed by π–π stacking interactions between oxazole and benzenoid rings.  相似文献   

17.
18.
The crystal structures of the title compounds, viz. C24H14F2N2O2, (I), and C25H17FN2O2, (II), respectively, have been determined in order to unravel the role of an ordered F atom in generating stable supra­molecular assemblies. On changing the substitution from fluorine to a methyl group, C—H⋯F inter­actions are replaced by C—H⋯π inter­actions, revealing the importance of such weak inter­actions when present alongside N—H⋯O and C—H⋯O hydrogen bonds. The dihedral angle between the planes of the 4‐fluoro­phenyl ring and the pyridine ring is 26.8 (1)° in (I), while that between the planes of the 4‐methyl­phenyl and pyridine rings is 29.5 (1)° in (II).  相似文献   

19.
The crystal structures of triethyl­ammonium adenosine cyclic 2′,3′‐phosphate {systematic name: triethyl­ammonium 4‐(6‐amino­purin‐9‐yl)‐6‐hydroxy­methyl‐2‐oxido‐2‐oxoperhydro­furano[3,4‐c][1,3,2]dioxaphosphole}, Et3NH(2′,3′‐cAMP) or C6H16N+·C10H11N5O6P, (I), and guanosine cyclic 2′,3′‐phosphate monohydrate {systematic name: triethyl­ammonium 6‐hydroxy­methyl‐2‐oxido‐2‐oxo‐4‐(6‐oxo‐1,6‐dihydro­purin‐9‐yl)perhydro­furano[3,4‐c][1,3,2]dioxaphosphole monohydrate}, [Et3NH(2′,3′‐cGMP)]·H2O or C6H16N+·C10H11N5O7P·H2O, (II), reveal different nucleobase orientations, viz. anti in (I) and syn in (II). These are stabilized by different inter‐ and intra­molecular hydrogen bonds. The structures also exhibit different ribose ring puckering [4E in (I) and 3T2 in (II)] and slightly different 1,3,2‐dioxaphospho­lane ring conformations, viz. envelope in (I) and puckered in (II). Infinite ribbons of 2′,3′‐cAMP and helical chains of 2′,3′‐cGMP ions, both formed by O—H⋯O, N—H⋯X and C—H⋯X (X = O or N) hydrogen‐bond contacts, characterize (I) and (II), respectively.  相似文献   

20.
The mol­ecules of N,N′‐bis­(2‐pyridylmeth­yl)ferrocene‐1,1′‐diyl­dicarboxamide, [Fe(C12H11N2O)2], contain intra­molecular N—H⋯N hydrogen bonds and are linked into sheets by three independent C—H⋯O hydrogen bonds. The mol­ecules of the isomeric compound N,N′‐bis­(3‐pyridylmeth­yl)ferrocene‐1,1′‐diyldicarboxamide lie across inversion centres, and the mol­ecules are linked into sheets by a combination of N—H⋯N hydrogen bonds and π–π stacking inter­actions between pyridyl groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号