首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the first example of a compound containing Ba2+, C2O42−, water and some additional halide or pseudo‐halide anions, viz. hexa‐μ2‐aqua‐μ6‐oxalato‐dibarium(II) diiso­thio­cyanate, {[Ba2(C2O4)(H2O)6](NCS)2}n. The structure consists of positively charged planar covalent layers of Ba2+ cations, oxalate anions and water mol­ecules. The first coordination sphere of the Ba2+ cation contains six water mol­ecules and four O atoms from two planar oxalate anions. The oxalate anion lies on an inversion centre and is coordinated to six Ba2+ cations, each donor O atom being bonded to two cations. Pairs of water mol­ecules are coordinated by two Ba2+ cations. The layers are interspersed with non‐coordinated NCS anions.  相似文献   

2.
The crystal and molecular structure of dipotassium di‐μ‐oxo‐bis[aqua(oxalato‐O1,O2)oxomolybdenum(III)] trihydrate, K2­[Mo2O4(C2O4)2(H2O)2]·3H2O, has been determined from X‐ray diffraction data. In the dimeric anion, which has approximate twofold symmetry, each Mo atom is in a distorted octahedral coordination, being bonded to one terminal oxo‐O atom, two bridging O atoms, two O atoms from the oxalato ligand and one from the water mol­ecule. Bond lengths trans to the multiple‐bonded terminal oxo ligand are larger than those in the cis position, confirming the trans influence as a generally valid rule.  相似文献   

3.
The title novel heterometallic 3d–4f coordination polymer, {[CuEr2(C5HN2O4)2(C2O4)(H2O)6]·3H2O}n, has a three‐dimensional metal–organic framework composed of two types of metal atoms (one CuII and two ErIII) and two types of bridging anionic ligands [3,5‐dicarboxylatopyrazolate(3−) (ptc3−) and oxalate]. The CuII atom is four‐coordinated in a square geometry. The ErIII atoms are both eight‐coordinated, but the geometries at the two atoms appear different, viz. triangular dodecahedral and bicapped trigonal prismatic. One of the oxalate anions is located on a twofold axis and the other lies about an inversion centre. Both oxalate anions act as bis‐bidentate ligands bridging the latter type of Er atoms in parallel zigzag chains. The pdc3− anions act as quinquedentate ligands not only chelating the CuII and the triangular dodecahedral ErIII centres in a bis‐bidentate bridging mode, but also connecting to ErIII centres of both types in a monodentate bridging mode. Thus, a three‐dimensional metal–organic framework is generated, and hydrogen bonds link the metal–organic framework with the uncoordinated water molecules. This study describes the first example of a three‐dimensional 3d–4f coordination polymer based on pyrazole‐3,5‐dicarboxylate and oxalate, and therefore demonstrates further the usefulness of pyrazoledicarboxylate as a versatile multidentate ligand for constructing heterometallic 3d–4f coordination polymers with interesting architectures.  相似文献   

4.
Poly[[tetraaquadi‐μ4‐citrato‐tetrakis(2,6‐diaminopurine)tetracobalt(II)] 6.35‐hydrate], {[Co4(C6H4O7)2(C5H6N6)4(H2O)4]·6.35H2O}n, presents three different types of CoII cations in the asymmetric unit, two of them lying on symmetry elements (one on an inversion centre and the other on a twofold axis). The main fragment is further composed of one fully deprotonated citrate (cit) tetraanion, two 2,6‐diaminopurine (dap) molecules and two aqua ligands. The structure is completed by a mixture of fully occupied and disordered solvent water molecules. The two independent dap ligands are neutral and the cit tetraanion provides for charge balance, compensating the 4+ cationic charge. There are two well defined coordination geometries in the structure. The simplest is mononuclear, with the CoII cation arranged in a regular centrosymmetric octahedral array, coordinated by two aqua ligands, two dap ligands and two O atoms from the β‐carboxylate groups of the bridging cit tetraanions. The second, more complex, group is trinuclear, bisected by a twofold axis, with the metal centres coordinated by two cit tetraanions through their α‐ and β‐carboxylate and α‐hydroxy groups, and by two dap ligands bridging through one of their pyridine and one of their imidazole N atoms. The resulting coordination geometry around each metal centre is distorted octahedral. Both groups are linked alternately to each other, defining parallel chains along [201], laterally interleaved and well connected via hydrogen bonding to form a strongly coupled three‐dimensional network. The compound presents a novel μ4‐κ5O:O,O′:O′,O′′,O′′′:O′′′′ mode of coordination of the cit tetraanion.  相似文献   

5.
Rubidium chromium(III) dioxalate dihydrate [di­aqua­bis(μ‐oxalato)­chromium(III)­rubidium(I)], [RbCr(C2O4)2(H2O)2], (I), and dicaesium magnesium dioxalate tetrahydrate [tetra­aqua­bis(μ‐oxalato)­magnesium(II)­dicaesium(I)], [Cs2Mg(C2­O4)2(H2O)4], (II), have layered structures which are new among double‐metal oxalates. In (I), the Rb and Cr atoms lie on sites with imposed 2/m symmetry and the unique water molecule lies on a mirror plane; in (II), the Mg atom lies on a twofold axis. The two non‐equivalent Cr and Mg atoms both show octahedral coordination, with a mean Cr—O distance of 1.966 Å and a mean Mg—O distance of 2.066 Å. Dirubid­ium copper(II) dioxalate dihydrate [di­aqua­bis(μ‐oxalato)­copper(II)­dirubidium(I)], [Rb2Cu(C2O4)2(H2O)2], (III), is also layered and is isotypic with the previously described K2‐ and (NH4)2CuII(C2O4)2·2H2O compounds. The two non‐equivalent Cu atoms lie on inversion centres and are both (4+2)‐coordinated. Hydro­gen bonds are medium‐strong to weak in the three compounds. The oxalate groups are slightly non‐planar only in the Cs–Mg compound, (II), and are more distinctly non‐planar in the K–Cu compound, (III).  相似文献   

6.
The first lanthanide mixed sulfate–sulfite inorganic coordination polymer, poly[diaqua‐μ4‐sulfato‐di‐μ4‐sulfito‐didysprosium(III)], [Dy2(SO3)2(SO4)(H2O)2]n, has been obtained, in which both sulfate and sulfite groups originate from the disproportionation of S2O32− under hydrothermal and weakly acidic conditions. The crystal structure of the title compound exhibits a three‐dimensional framework. The DyIII ion is surrounded by eight O atoms from one water molecule and two sulfate and five sulfite groups. These DyO8 polyhedra have two shared edges and form an infinite zigzag Dy—O chain. In the bc plane, neighbouring chains are integrated through SO3 trigonal pyramids, forming a two‐dimensional sheet. Along the a‐axial direction, the sulfate group, with the central S atom lying on a twofold axis, links adjacent two‐dimensional sheets via two S—O—Dy connections, thus generating the three‐dimensional framework.  相似文献   

7.
The oxalate dianion is one of the most studied ligands and is capable of bridging two or more metal centres and creating inorganic polymers based on the assembly of metal polyhedra with a wide variety of one‐, two‐ or three‐dimensional extended structures. Yellow single crystals of a new mixed‐metal oxalate, namely catena‐poly[[diaquasodium(I)]‐μ‐oxalato‐κ4O1,O2:O1′,O2′‐[diaquairon(III)]‐μ‐oxalato‐κ4O1,O2:O1′,O2′], [NaFe(C2O4)2(H2O)4]n, have been synthesized and the crystal structure elucidated by X‐ray diffraction analysis. The compound crystallizes in the noncentrosymmetric space group I41 (Z = 4). The asymmetric unit contains one NaI and one FeIII atom lying on a fourfold symmetry axis, one μ2‐bridging oxalate ligand and two aqua ligands. Each metal atom is surrounded by two chelating oxalate ligands and two equivalent water molecules. The structure consists of infinite one‐dimensional chains of alternating FeO4(H2OW1)2 and NaO4(H2OW2)2 octahedra, bridged by oxalate ligands, parallel to the [100] and [010] directions, respectively. Because of the cis configuration and the μ2‐coordination mode of the oxalate ligands, the chains run in a zigzag manner. This arrangement facilitates the formation of hydrogen bonds between neighbouring chains involving the H2O and oxalate ligands, leading to a two‐dimensional framework. The structure of this new one‐dimensional coordination polymer is shown to be unique among the AIMIII(C2O4)2(H2O)n series. In addition, the absorption bands in the IR and UV–Visible regions and their assignments are in good agreement with the local symmetry of the oxalate ligand and the irregular environment of iron(III). The final product of the thermal decomposition of this precursor is the well‐known ternary oxide NaFeO2.  相似文献   

8.
The title compound, poly[potassium [diaquapenta‐μ2‐dicyanamido‐dicadmium(II)] dihydrate], {K[Cd2(C2N3)5(H2O)2]·2H2O}n, contains two‐dimensional anionic sheets of {[Cd2{N(CN)2}(H2O)2]}n with a modified (6,3)‐net (layer group , No. 35). Two sets of equivalent sheets interpenetrate orthogonally to form a tetragonal enmeshed grid.  相似文献   

9.
The asymmetric unit of the title compound, {[La(C4H5O2)3(H2O)2]·C5H5N5·H2O}n, consists of an LaIII cation, three crotonate (but‐2‐enoate) anions and two coordinated water molecules forming the neutral complex, completed by an external adenine molecule and one hydration water molecule. The LaO10 coordination polyhedra, connected through the sharing of a single edge, form isolated chains running along the [100] direction. These one‐dimensional structures are characterized by two different centrosymmetric La2O2 loops, with La...La distances of 4.5394 (6) and 4.5036 (6) Å. The unbound adenine and water solvent molecules form a highly planar hydrogen‐bonded array parallel to (110) (r.m.s. deviation from the mean plane < 0.10 Å) which intersects the isolated La–crotonate chains in a slanted fashion to form an extremely connected hydrogen‐bonded three‐dimensional structure.  相似文献   

10.
In catena‐poly­[[[tri­aqua­cadmium(II)]‐μ‐acetyl­enedi­carboxyl­ato‐κ4O,O′:O′′,O′′′] hydrate], {[Cd(C4O4)(H2O)3]·­H2O}n, the CdII atom is coordinated by two bidentate carboxyl­ate groups and three water mol­ecules, thus forming a sevenfold coordination polyhedron with all atoms located on general sites. These polyhedra are connected by the bifunctional acetyl­enedi­carboxyl­ate ligands, forming zigzag chains running parallel to [120]. Hydro­gen bonds, which involve the non‐coordinated water mol­ecule, connect these chains to form a three‐dimensional framework.  相似文献   

11.
The title compounds, poly­[[[bis(2‐methoxy­ethyl) ether]­lithium(I)]‐di‐μ3‐tri­fluoro­methanesulfonato‐lithium(I)], [Li2(CF3SO3)2(C6H14O3)]n, and poly­[[[bis(2‐methoxy­ethyl) ether]­lithium(I)]‐di‐μ3‐tri­fluoro­acetato‐dilithium(I)‐μ3‐tri­fluoro­acetato], [Li3(C2F3O2)3(C6H14O3)]n, consist of one‐dimensional polymer chains. Both structures contain five‐coordinate Li+ cations coordinated by a tridentate diglyme [bis(2‐methoxy­ethyl) ether] mol­ecule and two O atoms, each from separate anions. In both structures, the [Li(diglyme)X2]? (X is CF3SO3 or CF3CO2) fragments are further connected by other Li+ cations and anions, creating one‐dimensional chains. These connecting Li+ cations are coordinated by four separate anions in both compounds. The CF3SO3? and CF3CO2? anions, however, adopt different forms of cation coordination, resulting in differences in the connectivity of the structures and solvate stoichiometries.  相似文献   

12.
The title compound, [Ni2(C2O4)(C4H13N3)2(H2O)2](PF6)2·‐2H2O, contains a dinuclear oxalato‐bridged nickel(II) complex cation. The structure determination reveals the presence of a centrosymmetric binuclear complex where the oxalate ligand is coordinated in a bis­‐bidentate mode to the Ni atoms. The distorted octahedral environment of each Ni atom is completed by the three N atoms of the diethyl­enetri­amine ligand in a fac arrangement and by one O atom from a water mol­ecule. PF6? acts as counter‐anion. A two‐dimensional network of hydrogen bonds links the cations and anions and stabilizes the structure.  相似文献   

13.
Single crystals of two new bimetallic oxalate compounds with the formula [ACr(C2O4)2(H2O)4]n (A = Li or Na), namely catena‐poly[[diaqualithium(I)]‐μ‐oxalato‐κ4O1,O2:O1′,O2′‐[diaquachromium(III)]‐μ‐oxalato‐κ4O1,O2:O1′,O2′], ( I ), and catena‐poly[[diaquasodium(I)]‐μ‐oxalato‐κ4O1,O2:O1′,O2′‐[di‐aquachromium(III)]‐μ‐oxalato‐κ4O1,O2:O1′,O2′], ( II ), have been synthesized, characterized and their crystal structures elucidated by X‐ray diffraction analysis and compared. The compounds crystallize in the monoclinic space group C2/m for ( I ) and in the triclinic space group P for ( II ); however, they have somewhat similar features. In the asymmetric unit of ( I ), the Li and Cr atoms both have space‐group‐imposed 2/m site symmetry, while only half of the oxalate ligand is present and two independent water molecules lie on the mirror plane. The water O atoms around the Li atom are disordered over two equivalent positions separated by 0.54 (4) Å. In the asymmetric unit of ( II ), the atoms of one C2O42? ligand and two independent water molecules are in general positions, and the Na and Cr atoms lie on an inversion centre. Taking into account the symmetry sites of both metallic elements, the unit cells may be described as pseudo‐face‐centred monoclinic for ( I ) and as pseudo‐centred triclinic for ( II ). Both crystal structures are comprised of one‐dimensional chains of alternating trans‐Cr(CO)4(H2O)2 and transA(CO)4(H2O)2 units μ2‐bridged by bis‐chelating oxalate ligands. The resulting linear chains are parallel to the [101] direction for ( I ) and to the [11] direction for ( II ). Within the two coordination polymers, strong hydrogen bonds result in tetrameric R44(12) synthons which link the metal chains, thus leading to two‐dimensaional supramolecular architectures. The two structures differ from each other with respect to the symmetry relations inside the ligand, the role of electrostatic forces in the crystal structure and the molecular interactions of the hydrogen‐bonded networks. Moreover, they exhibit the same UV–Vis pattern typical of a CrIII centrosymmetric geometry, while the IR absorption shows some differences due to the oxalate‐ligand conformation. Polymers ( I ) and ( II ) are also distinguished by a different behaviours during the decomposition process, the precursor ( I ) leading to the oxide LiCrO2, while the residues of ( II ) consist of a mixture of sodium carbonate and CrIII oxide.  相似文献   

14.
Two new oxo complexes, namely hexa‐μ2‐acetato‐acetato­aquabis­(di‐3‐pyridylamine)di‐μ3‐oxo‐tetra­iron(III) chloride mono­hydrate ethanol 1.25‐solvate, [Fe4(C2H3O2)7O2(C10H9N3)2(H2O)]Cl·1.25C2H6O·H2O, (I), containing a tetra­nuclear [Fe43‐O)2]8+ unit, and 2‐methyl­imidazolium hexa‐μ2‐acetato‐acetatodiaqua‐μ3‐oxo‐triiron(III) chloride dihydrate, (C4H7N2)[Fe3(C2H3O2)7O(H2O)2]Cl·2H2O, (II), with a trinuclear [Fe33‐O)]7+ unit, are presented. Both structures are formed by two well differentiated entities, viz. a compact isolated cluster composed of FeIII ions coordinated to O2− and CH3CO2 anions, and an external group formed by a central Cl ion surrounded by different solvent groups to which the anion is bound through hydrogen bonding. In the case of (I), charge balance cannot be achieved within the groups, so the structure is macroscopically ionic; in the case of (II), in contrast, each group is locally neutral owing to the inter­nal compensation of charges. The trinuclear complex crystallizes with the metal cluster, chloride anion and 2‐methyl­imidazolium cation bisected by a crystallographic mirror plane.  相似文献   

15.
The title compound, di­ammonium aqua‐μ‐carbonato‐tri‐μ‐­oxalato‐dineodymium(III) hydrate, (NH4)2[Nd2(CO3)(C2O4)3(H2O)]·H2O, involving the two ligands oxalate and carbonate, has been prepared hydro­thermally as single crystals. The Nd atoms form a tetranuclear unit across the inversion centre at (,,). Starting from this tetranuclear unit, the oxalate ligands serve to develop a three‐dimensional network. The carbonate group acts as a bis‐chelating ligand to two Nd atoms, and is monodentate to a third Nd atom. The oxalate groups are all bis‐chelating. The two independent Nd atoms are ninefold coordinated and the coordination polyhedron of these atoms is a distorted monocapped antiprism.  相似文献   

16.
A one‐dimensional cyanide‐bridged coordination polymer, poly[[aquadi‐μ‐cyanido‐κ4C:N‐hexacyanido‐κ6C‐(dimethylformamide‐κO)bis(3,4,7,8‐tetramethyl‐1,10‐phenanthroline‐κ2N,N′)terbium(III)molybdate(V)] 4.5‐hydrate], [MoTb(CN)8(C16H16N2)2(C3H7NO)(H2O)]·4.5H2O}n, has been prepared and characterized through IR spectroscopy, elemental analysis and single‐crystal X‐ray diffraction. The compound consists of one‐dimensional chains in which cationic [Tb(tmphen)2(DMF)(H2O)]3+ (tmphen is 3,4,7,8‐tetramethyl‐1,10‐phenanthroline) and anionic [MoV(CN)8]3− units are linked in an alternating fashion through bridging cyanide ligands. Neighbouring chains are connected by three types of hydrogen bonds (O—H...O, O—H...N and C—H...O) and by π–π interactions to form a three‐dimensional supramolecular structure. In addition, magnetic investigations show that ferromagnetic interactions exist in the compound.  相似文献   

17.
In the title complex, catena‐poly[[[diaqua­calcium(I)]‐μ2‐aqua‐μ3‐benzoato‐κ4O:O,O′:O′] benzoate], {[Ca(C7H5O2)(H2O)3](C7H5O2)}n, obtained by the reaction of CaCl2 and potassium benzoate in water, the Ca atom is eight‐coordinated by four carboxyl­ate O atoms and four water mol­ecules. The structure consists of polymeric {[Ca(C6H5COO)(H2O)3]+} chains alternating with layers of uncoordinated C6H5COO anions. The nearly planar anions are linked to the chain by short hydrogen bonds to form a two‐dimensional network.  相似文献   

18.
The ultrasonic reaction of AgNO3, 4,4′‐bipyridine (bipy) and naphthalene‐2,6‐dicarboxylic acid (H2NDC) gives rise to the title compound, {[Ag2(C10H8N2)2](C12H6O4)·4H2O}n. The NDC dianion is located on an inversion centre. The AgI centre is coordinated in a linear manner by two N atoms from two bipy ligands. The crystal structure consists of one‐dimensional AgI–bipy cationic chains and two‐dimensional NDC–H2O anionic sheets, constructed by coordination bonds and supramolecular interactions, respectively.  相似文献   

19.
The crystal structure of the title complex, {[Cu3(C2H3O2)2(OH)2(H2O)4](C10H6O6S2)}n, is built of infinite polymeric cationic {[Cu3(C2H3O2)2(H2O)4(OH)2]2+}n chains stretching along the a axis, with naphthalene‐1,5‐disulfonate (1,5‐nds) anions in between. One independent CuII cation and the 1,5‐nds anion occupy special positions on crystallographic inversion centres. Each CuII cation has an octa­hedral coordination environment formed by two carboxyl O atoms, two hydroxo O atoms and two water mol­ecules. The carboxyl­ate and hydroxo groups perform a bridging function, linking adjacent Cu atoms in the chain, with a shortest Cu⋯Cu distance of 2.990 (3) Å. The chains are further linked into a three‐dimensional supra­molecular framework via hydrogen‐bonding inter­actions involving the sulfonate groups of the 1,5‐­nds dianions.  相似文献   

20.
The title complex, catena‐poly[di‐μ3‐acetato‐κ6O:O:O′‐tetra‐μ2‐acetato‐κ4O:O4O:O′‐diaquabis(pyridine‐κN)trimanganese(II)], [Mn3(CH3COO)6(C6H5N)2(H2O)2]n, is a true one‐dimensional coordination polymer, in which the MnII centres form a zigzag chain along [010]. The asymmetric unit contains two metal centres, one of which (Mn1) lies on an inversion centre, while the other (Mn2) is placed close to an inversion centre on a general position. Since all the acetates behave as bridging ligands, although with different μ2‐ and μ3‐coordination modes, a one‐dimensional polymeric structure is formed, based on trinuclear repeat units (Mn1...Mn2...Mn2′), in which the Mn2 and Mn2′ sites are related by an inversion centre. Within this monomeric block, the metal–metal separations are Mn1...Mn2 = 3.36180 (18) Å and Mn2...Mn2′ = 4.4804 (3) Å. Cation Mn1, located on an inversion centre, displays an [MnO6] coordination sphere, while Mn2, on a general position, has a slightly stronger [MnO5N] ligand field, as the sixth coordination site is occupied by a pyridine molecule. Both centres approximate an octahedral ligand field. The chains are parallel in the crystal structure and interact via hydrogen bonds involving coordinated water molecules. However, the shortest metal–metal separation between two chains [5.3752 (3) Å] is large compared with the intrachain interactions. These structural features are compatible with a single‐chain magnet behaviour, as confirmed by preliminary magnetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号