首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The copper(II) environments for tetra­kis­(1‐eth­yl‐1,2,4‐triaz­ole)­dinitratocopper(II), [Cu(NO3)2(C4H7N3)4], and tetrakis­(1‐prop­yl‐1,2,4‐triazole)dinitratocopper(II), [Cu(NO3)2(C5H9N3)4], are distorted square bipyramidal. Both structures are centrosymmetric, with the copper(II) ions located at inversion centers coordinated by four N atoms of four triazole mol­ecules and by two O atoms of two nitrate ions in an elongated octa­hedral geometry. This elongation is a result of the Jahn–Teller effect. The largest distortion is that of the N—Cu—O angles, which differ from 90° by 5.68 (10)° in the eth­yl and 5.59 (8)° in the prop­yl derivative.  相似文献   

2.
The title compound, [Cu2(C2H3O2)4(C11H9N)2] or [Cu2(MeCO2)4(phpy)2] (phpy is 4‐phenyl­pyridine), consists of centrosymmetric dimers in which the CuII atoms display a square‐pyramidal CuO4N coordination, with four acetate O atoms in the basal plane [Cu—O 1.975 (3)–1.987 (3) Å] and the phpy N atom in the apical position [Cu—N 2.150 (3) Å]. The Cu atoms are 2.654 (1) Å apart and are bridged by four acetate groups. The discrete dimers are extended into a three‐dimensional supramolecular array through intermolecular π–π‐stacking interactions.  相似文献   

3.
The title compound corresponds to a copper(II) dimer, [Cu2(OH)2(C2H3N)2(C21H22N2)2](ClO4)2, where the metal centres are μ2‐bridged by hydroxo groups. The coordination of each copper(II) centre is a slightly distorted square‐based pyramid, with two N atoms from dibenzyl(6‐methyl‐2‐pyridylmethyl)amine (BiBzMePMA) and two hydroxo O atoms occupying the basal positions, and the aceto­nitrile N atom at the apical position. The dimer is centrosymmetric, with a crystallographic inversion centre midway between the two Cu atoms [Cu⋯Cu = 2.9522 (9) Å]  相似文献   

4.
In the crystal structure of the title compound {systematic name: bis­[6‐methyl‐1,2,3‐oxa­thia­zin‐4(3H)‐one 2,2‐dioxide(1−)‐κ2N3,O4]bis­(3‐meth­yl­pyridine)copper(II)}, [Cu(C4H4NO4S)2(C6H7N)2], the CuII centre resides on a centre of symmetry and has an octa­hedral geometry that is distorted both by the presence of four‐membered chelate rings and because of the Jahn–Teller effect. The equatorial plane is formed by the N atoms of two methyl­pyridine ligands and by the more basic O atoms of the acesulfamate ligands, while the weakly basic N atoms of these ligands are in elongated axial positions with a misdirected valence. The crystal is stabilized by two inter­molecular C—H⋯O inter­actions involving the methyl and CH groups, and the sulfonyl O atoms of the acesulfamate group.  相似文献   

5.
The title compound, [Cu4(C7H4ClO2)4(C6H6NO)4], consists of isolated tetranuclear clusters, where the Cu2+ cations are five‐ and sixfold coordinated by O atoms from the 4‐chlorobenzoate anions and by pyridine N and methanolate O atoms from bidentate 2‐pyridylmethanolate ligands. While three Cu atoms are six‐coordinated by an NO5 donor set forming distorted octahedra, the fourth Cu atom is five‐coordinated by an NO4 donor set forming a distorted tetragonal–pyramidal coordination around the Cu atom. The nucleus is a deformed cubane‐like Cu4O4 structure, with Cu...Cu distances in the range 3.0266 (11)–3.5144 (13) Å.  相似文献   

6.
Two new complexes, [Co(C2N3)2(C8H6N2)2], (I), and [Cu(C2N3)2(C8H6N2)2], (II), are reported. They are essentially isomorphous. Complex (I) displays distorted octahedral geometry, with the Co atom coordinated by four dicyan­amide nitrile N atoms [Co—N = 2.098 (3) and 2.104 (3) Å] in the basal plane, along with two monodentate quinoxaline N atoms [Co—N = 2.257 (2) Å] in the apical positions. In complex (II), the Cu atom is surrounded by four dicyan­amide nitrile N atoms [Cu—N = 2.003 (3) and 2.005 (3) Å] in the equatorial plane and two monodentate quinoxaline N atoms [Cu—N = 2.479 (3) Å] in the axial sites, to form a distorted tetragonal–bipyramidal geometry. The metal atoms reside on twofold axes of rotation. Neighbouring metal atoms are connected via double dicyan­amide bridges to form one‐dimensional infinite chains. Adjacent chains are then linked by π–π stacking interactions of the quinoxaline mol­ecules, resulting in the formation of a three‐dimensional structure.  相似文献   

7.
The title compound, [Cu4Cl8(C4H9NO2)4], crystallizes in the centrosymmetric space group P21/c with a unit cell containing two tetra­nuclear copper(II) complexes sited on crystallographic inversion centres. The coordination geometry around the central Cu atoms is square pyramidal, with four O atoms in the basal plane and a Cl atom in the apical position. The lateral CuCl4 groups are flattened tetra­hedral. The bridging dimethyl­glycine mol­ecules are present in the dipolar zwitterionic form. The tetra­nuclear copper complexes exist as isolated entities since only intra­molecular hydrogen bonds are found.  相似文献   

8.
The title two‐dimensional hydrogen‐bonded coordination compounds, [Cu(C8H5O4)2(C4H6N2)2], (I), and [Cu(C8H7O2)2(C4H6N2)2]·H2O, (II), have been synthesized and structurally characterized. The molecule of complex (I) lies across an inversion centre, and the Cu2+ ion is coordinated by two N atoms from two 4‐methyl‐1H‐imidazole (4‐MeIM) molecules and two O atoms from two 3‐carboxybenzoate (HBDC) anions in a square‐planar geometry. Adjacent molecules are linked through intermolecular N—H...O and O—H...O hydrogen bonds into a two‐dimensional sheet with (4,4) topology. In the asymmetric part of the unit cell of (II) there are two symmetry‐independent molecules, in which each Cu2+ ion is also coordinated by two N atoms from two 4‐MeIM molecules and two O atoms from two 3‐methylbenzoate (3‐MeBC) anions in a square‐planar coordination. Two neutral complex molecules are held together via N—H...O(carboxylate) hydrogen bonds to generate a dimeric pair, which is further linked via discrete water molecules into a two‐dimensional network with the Schläfli symbol (43)2(46,66,83). In both compounds, as well as the strong intermolecular hydrogen bonds, π–π interactions also stabilize the crystal stacking.  相似文献   

9.
In the crystal structure of the title compound, bis­(2‐amino­pyrimidine‐κN1)bis­[6‐meth­yl‐1,2,3‐oxathia­zin‐4(3H)‐one 2,2‐dioxide(1−)‐κ2N3,O4]copper(II), [Cu(C4H4NO4S)2(C4H5N3)2], the first mixed‐ligand complex of acesulfame, the CuII centre resides on a centre of symmetry and has an octa­hedral geometry that is distorted both by the presence of four‐membered chelate rings and by the Jahn–Teller effect. The equatorial plane is formed by the N atoms of two amino­pyrimidine (ampym) ligands and by the weakly basic carbonyl O atoms of the acesulfamate ligands, while the more basic deprotonated N atoms of these ligands are in the elongated axial positions with a strong misdirected valence. The crystal is stabilized by pyrimidine ring stacking and by inter­molecular hydrogen bonding involving the NH2 moiety of the ampym ligand and the carbon­yl O atom of the acesulfamate moiety.  相似文献   

10.
The title complex, [Ag4(C7H5O3)2(C8H6N2)4(C7H6O3)4], lies about an inversion centre and has a unique tetra­nuclear structure consisting of four AgI atoms bridged by four N atoms from two 1,8‐naphthyridine (napy) ligands to form an N:N′‐bridge and four O atoms from two salicylate (SA) ligands to form an O:O′‐bridge. The Ag atoms have distorted octa­hedral coordination geometry. The centrosymmetric Ag4 ring has Ag—Ag separations of 2.772 (2) and 3.127 (2) Å, and Ag—Ag—Ag angles of 107.70 (4) and 72.30 (4)°. All SA hydroxy groups take part in intra­molecular O—H⋯O hydrogen bonding. In the crystal packing, the napy rings are oriented parallel and overlap one another. These π–π inter­actions, together with weak inter­molecular C—H⋯O contacts, stabilize the crystal structure.  相似文献   

11.
The title compounds, [CuFe2(C5H5)2(C9H8O2)2], (I), and [CuFe4(C5H5)4(C13H9O2)2], (II), are four‐coordinate square‐planar copper(II) complexes with two bidentate 1‐ferrocenylbutane‐1,3‐dionate or 1,3‐diferrocenylpropane‐1,3‐dionate ligands, respectively. The copper ion in (I) lies on an inversion centre, with one‐half of the mol­ecule in the asymmetric unit, while in (II), there are two independent half mol­ecules in the asymmetric unit, with the copper ions also situated on inversion centres. The ferrocene substituents in (I) are in an anti arrangement. The mol­ecules assemble in the crystal structure in layers with ferrocene groups at the surface. The pairs of ferrocene substituents on each ligand in complex (II) are syn and these adopt an anti arrangement with respect to the pair on the other diketonate ligand. As found in (I), complexes assemble in a layered structure with ferrocene‐coated surfaces.  相似文献   

12.
The title compound, [Cu(C7H5O3)2(C6H6N2O)2(H2O)2], is a two‐dimensional hydrogen‐bonded supramolecular complex. The CuII ion resides on a centre of symmetry and is in an octahedral coordination environment comprising two pyridine N atoms, two carboxylate O atoms and two O atoms from water molecules. Intermolecular N—H...O and O—H...O hydrogen bonds produce R22(4), R22(8) and R22(15) rings which lead to one‐dimensional polymeric chains. An extensive two‐dimensional network of N—H...O and O—H...O hydrogen bonds and C—H...π interactions are responsible for crystal stabilization.  相似文献   

13.
The solvent effect on the molecular structures of copper(II) complexes produced from the reaction between CuBr2 and 1,10‐phenanthroline is evident. The momomeric title compound, [CuBr2(C12H8N2)(C2H6OS)], which consists of discrete units, is produced from this reaction in dimethyl sulfoxide (DMSO), whereas a polymeric copper(II) compound is known to be produced from the same reaction in the poor coordinating solvent ethanol. The geometry around the copper(II) ion in the title compound is best described as trigonal–bipyramidal distorted square‐based pyramidal, with a τ value of 0.37. The two phenanthroline N atoms, the DMSO O atom and one of the Br atoms occupy the four basal positions, while the second Br atom occupies the axial position. The magnetic susceptibility data also indicate that the title compound is monomeric, but there is still a weak antiferromagnetic interaction between paramagnetic copper(II) centers via the intermolecular `Cu—Br...Br—Cu' contact pathway.  相似文献   

14.
The title compound, [Cu2(C2H3O2)4(C6H4N2)2], has the familiar lantern‐type structure that is characteristic of dimetal tetra­carboxyl­ates of copper and several other transition elements. The molecule lies about an inversion centre and the Cu atom is present in a distorted square‐pyramidal coordination environment, consisting of four O atoms in equatorial positions and the pyridyl‐N atoms of the two 4‐cyano­pyridine ligands in axial positions.  相似文献   

15.
In the title polymeric compound, [Cu(C9H6O4)(C3H4N2)2]n, the copper(II) cation occupies an N2O3 coordination sphere defined by two 1H‐imidazole (imid) ligands in trans positions and three carboxylate O atoms from three different 2‐(carboxylatomethyl)benzoate (hpt2−) dianions. The geometry is that of a square pyramid with one of the O atoms at the apex, bridging neighbouring metal centres into an [–ON2CuO2CuN2O–] dinuclear unit. These units are in turn connected by hpt anions into a reticular mesh topologically characterized by two types of loops, viz. a four‐membered Cu2O2 diamond motif and a 32‐membered Cu4O8C20 ring. The imid groups do not take part in the formation of the two‐dimensional structure, but take part in the N—H...O interactions. These arise only within individual planes, interplanar interactions being only of the van der Waals type.  相似文献   

16.
In the crystal structure of the title compound, [Cu3Cl6(C4H6N4)4]n, there are three Cu atoms, six Cl atoms and four 2‐allyl­tetrazole ligands in the asymmetric unit. The polyhedron of one Cu atom adopts a flattened octahedral geometry, with two 2‐allyl­tetrazole ligands in the axial positions [Cu—N4 = 1.990 (2) and 1.991 (2) Å] and four Cl atoms in the equatorial positions [Cu—Cl = 2.4331 (9)–2.5426 (9) Å]. The polyhedra of the other two Cu atoms have a square‐pyramidal geometry, with three basal sites occupied by Cl atoms [Cu—Cl = 2.2487 (9)–2.3163 (8) and 2.2569 (9)–2.3034 (9) Å] and one basal site occupied by a 2‐allyl­tetrazole ligand [Cu—N4 = 2.028 (2) and 2.013 (2) Å]. A Cl atom lies in the apical position of either pyramid [Cu—Cl = 2.8360 (10) and 2.8046 (9) Å]. The possibility of including the tetrazole N3 atoms in the coordination sphere of the two Cu atoms is discussed. Neighbouring copper polyhedra share their edges with Cl atoms to form one‐dimensional polymeric chains running along the a axis.  相似文献   

17.
A novel dinuclear bismuth(III) coordination compound, [Bi2(C7H3NO4)2(N3)2(C12H8N2)2]·4H2O, has been synthesized by an ionothermal method and characterized by elemental analysis, energy‐dispersive X‐ray spectroscopy, IR, X‐ray photoelectron spectroscopy and single‐crystal X‐ray diffraction. The molecular structure consists of one centrosymmetric dinuclear neutral fragment and four water molecules. Within the dinuclear fragment, each BiIII centre is seven‐coordinated by three O atoms and four N atoms. The coordination geometry of each BiIII atom is distorted pentagonal–bipyramidal (BiO3N4), with one azide N atom and one bridging carboxylate O atom located in axial positions. The carboxylate O atoms and water molecules are assembled via O—H...O hydrogen bonds, resulting in the formation of a three‐dimensional supramolecular structure. Two types of π–π stacking interactions are found, with centroid‐to‐centroid distances of 3.461 (4) and 3.641 (4) Å.  相似文献   

18.
Two new complexes, [Cu(C2N3)2(dien)] (dien is diethyl­ene­tri­amine, C4H13N3), (I), and [Cu(C2N3)(trien)](C2N3) (trien is triethyl­ene­tetr­amine, C6H18N4), (II), have been characterized by single‐crystal X‐ray diffraction. Both complexes display a distorted tetragonal–pyramidal geometry. In (I), the Cu atom is coordinated in the basal plane by three diethyl­ene­tri­amine N atoms [Cu—N = 2.000 (2), 2.004 (2) and 2.025 (2) Å] and one terminal N atom [Cu—N = 1.974 (2) Å] from one monodentate dicyan­amide group, and in the apical position by one terminal N atom [Cu—N = 2.280 (2) Å] from the other monodentate dicyan­amide group. In (II), the Cu atom is surrounded by four triethyl­ene­tetr­amine N atoms [Cu—N = 2.012 (2), 2.014 (2), 2.019 (2) and 2.031 (2) Å in the basal plane] and a terminal N atom [Cu—N = 2.130 (2) Å in the apical site] from one monodentate dicyan­amide group. The other dicyan­amide anion is not directly coordinated to the metal atom. In both (I) and (II), hydro­gen‐bond interactions between the uncoordinated terminal N atoms of two dicyan­amide ions and the amine H atoms lead to the formation of three‐dimensional networks.  相似文献   

19.
The two title dinuclear copper(II) complexes, [Cu2Cl4(C17H20Cl2N2)2], (I), and [Cu2Cl4(C19H22N2O4)2], (II), have similar coordination environments. In each complex, the asymmetric unit consists of one half‐molecule and the two copper centres are bridged by a pair of Cl atoms, resulting in complexes with centrosymmetric structures containing Cu(μ‐Cl)2Cu parallelogram cores; the Cu...Cu separations and Cu—Cl—Cu angles are 3.4285 (8) Å and 83.36 (3)°, respectively, for (I), and 3.565 (2) Å and 84.39 (7)° for (II). Each Cu atom is five‐coordinated and the coordination geometry around the Cu atom is best described as a distorted square‐pyramid with a τ value of 0.155 (3) for (I) and 0.092 (7) for (II). The apical Cu—Cl bond length is 2.852 (1) Å for (I) and 2.971 (2) Å for (II). The basal Cu—Cl and Cu—N average bonds lengths are 2.2673 (9) and 2.030 (2) Å, respectively, for (I), and 2.280 (2) and 2.038 (6) Å for (II). The molecules of (I) are linked by one C—H...Cl hydrogen bond into a complex [10] sheet. The molecules of (II) are linked by one C—H...Cl and one N—H...O hydrogen bond into a complex [100] sheet.  相似文献   

20.
In the crystal structure of the title compound [systematic name: diaqua­bis(6‐methyl‐2,2‐dioxo‐1,2,3‐oxathia­zin‐4‐olato‐κO4)bis­(3‐methyl­pyridine‐κN)nickel(II)], [Ni(C4H4NO4S)2(C6H7N)2(H2O)2], the NiII centre resides on a centre of symmetry and has a distorted octa­hedral geometry. The basal plane is formed by two carbonyl O atoms of two monodentate trans‐oriented acesulfamate ligands and two trans aqua ligands. The axial positions in the octa­hedron are occupied by two N atoms of two trans pyridine ligands. Mol­ecules are stacked in columns running along the a axis. There are π–π stacking inter­actions between the mol­ecules in each column, with a distance of 3.623 (2) Å between the centroids of the pyridine rings. There are also O—H⋯O inter­actions between the columns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号