首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystallization of 2‐amino‐4‐chloro‐6‐morpholino­pyrimidine, C8H11ClN4O, (I), yields two polymorphs, both with space group P21/c, having Z′ = 1 (from diethyl ether solution) and Z′ = 2 (from di­chloro­methane solution), denoted (Ia) and (Ib), respectively. In polymorph (Ia), the mol­ecules are linked by an N—H⋯O and an N—H⋯N hydrogen bond into sheets built from alternating R(8) and R(40) rings. In polymorph (Ib), one mol­ecule acts as a triple acceptor of hydrogen bonds and the other acts as a single acceptor; one N—H⋯O and three N—H⋯N hydrogen bonds link the mol­ecules in a complex chain containing two types of R(8) and one type of R(18) ring. 2‐Amino‐4‐chloro‐6‐piperidino­pyrimidine, C9H13ClN4, (II), which is isomorphous with polymorph (Ib), also has Z′ = 2 in P21/c, and the mol­ecules are linked by three N—­H⋯N hydrogen bonds into a centrosymmetric four‐mol­ecule aggregate containing three R(8) rings.  相似文献   

2.
Crystal structures are reported for three fluoro‐ or chloro‐substituted 1′‐deoxy‐1′‐phenyl‐β‐D‐ribofuranoses, namely 1′‐deoxy‐1′‐(2,4,5‐trifluorophenyl)‐β‐D‐ribofuranose, C11H11F3O4, (I), 1′‐deoxy‐1′‐(2,4,6‐trifluorophenyl)‐β‐D‐ribofuranose, C11H11F3O4, (II), and 1′‐(4‐chlorophenyl)‐1′‐deoxy‐β‐D‐ribofuranose, C11H13ClO4, (III). The five‐membered furanose ring of the three compounds has a conformation between a C2′‐endo,C3′‐exo twist and a C2′‐endo envelope. The ribofuranose groups of (I) and (III) are connected by intermolecular O—H...O hydrogen bonds to six symmetry‐related molecules to form double layers, while the ribofuranose group of (II) is connected by O—H...O hydrogen bonds to four symmetry‐related molecules to form single layers. The O...O contact distance of the O—H...O hydrogen bonds ranges from 2.7172 (15) to 2.8895 (19) Å. Neighbouring double layers of (I) are connected by a very weak intermolecular C—F...π contact. The layers of (II) are connected by one C—H...O and two C—H...F contacts, while the double layers of (III) are connected by a C—H...Cl contact. The conformations of the molecules are compared with those of seven related molecules. The orientation of the benzene ring is coplanar with the H—C1′ bond or bisecting the H—C1′—C2′ angle, or intermediate between these positions. The orientation of the benzene ring is independent of the substitution pattern of the ring and depends mainly on crystal‐packing effects.  相似文献   

3.
The title compound, C24H24N2O2, crystallizes as a triclinic polymorph from dimethyl­formamide and a monoclinic polymorph from ethanol. In both forms, the mol­ecule displays crystallographic inversion symmetry, and the packing involves translationally related `ladders' of mol­ecules connected by N—H⋯O=C hydrogen bonds. Differences between the structures can be rationalized in terms of weak C—H⋯O contacts. Powder and differential scanning calorimetry investigations of new samples gave no evidence for the triclinic form, and it seems to represent a disappearing polymorph.  相似文献   

4.
A novel anhydrogalactosucrose derivative 2′‐methoxyl‐O‐1′,4′:3′,6′‐dianhydro‐βD‐fructofuranosyl 3,6‐anhydro‐4‐chloro‐4‐deoxy‐αD‐galactopyranoside ( 4 ) was prepared from 3,6:1′,4′:3′,6′‐trianhydro‐4‐chloro‐4‐deoxy‐galactosucrose ( 3 ) via a facile method and characterized by 1H NMR, 13C NMR and 2D NMR spectra. The single crystal X‐ray diffraction analysis shows that the title molecule forms a two thee‐dimensional network structure by two kinds of hydrogen bond interactions [O(2) H(2)···O(7), O(5) H(5)···O(8)]. Its stability was investigated by acid hydrolysis reaction treated with sulfuric acid, together with the formation of 1,6‐Di‐O‐methoxy‐4‐chloro‐4‐deoxy‐βD‐galactopyranose ( 5 ) and 2,2‐Di‐C‐methoxy‐1,4:3,6‐dianhydromannitol ( 6 ). According to the result, the relative stability of the ether bonds in the structure is in the order: C(1) O C(5)≈C(3′) O C(6′)≈C(1′) O C(4′)>C(3) O C(6)≈C(1) O C(2′)>C(2′) O C(5′).  相似文献   

5.
The structures of three isomeric compounds, C7H4ClNO4·C8H6N2, of phthalazine with chloro‐ and nitro‐substituted benzoic acid, namely, 3‐chloro‐2‐nitrobenzoic acid–phthalazine (1/1), (I), 4‐chloro‐2‐nitrobenzoic acid–phthalazine (1/1), (II), and 4‐chloro‐3‐nitrobenzoic acid–phthalazine (1/1), (III), have been determined at 190 K. In the asymmetric unit of each compound, there are two crystallographically independent chloronitrobenzoic acid–phthalazine units, in each of which the two components are held together by a short hydrogen bond between an N atom of the base and a carboxyl O atom. In one hydrogen‐bonded unit of (I) and in two units of (II), a weak C—H...O interaction is also observed between the two components. The N...O distances are 2.5715 (15) and 2.5397 (17) Å for (I), 2.5655 (13) and 2.6081 (13) Å for (II), and 2.613 (2) and 2.589 (2) Å for (III). In both hydrogen‐bonded units of (I) and (II), the H atoms are each disordered over two positions with (N site):(O site) occupancies of 0.35 (3):0.65 (3) and 0.31 (3):0.69 (3) for (I), and 0.32 (3):0.68 (3) and 0.30 (3):0.70 (3) for (II). The H atoms in the hydrogen‐bonded units of (III) are located at the O‐atom sites.  相似文献   

6.
The structures of four isomeric compounds, all C7H4ClNO4·C9H7N, of quinoline with chloro‐ and nitro‐substituted benzoic acid, namely, 2‐chloro‐5‐nitrobenzoic acid–quinoline (1/1), (I), 3‐chloro‐2‐nitrobenzoic acid–quinoline (1/1), (II), 4‐chloro‐2‐nitrobenzoic acid–quinoline (1/1), (III), and 5‐chloro‐2‐nitrobenzoic acid–quinoline (1/1), (IV), have been determined at 185 K. In each compound, a short hydrogen bond is observed between the pyridine N atom and a carboxyl O atom. The N...O distances are 2.6476 (13), 2.5610 (13), 2.5569 (12) and 2.5429 (12) Å for (I), (II), (III) and (IV), respectively. Although in (I) the H atom in the hydrogen bond is located at the O site, in (II), (III) and (IV) the H atom is disordered in the hydrogen bond over two positions with (N site):(O site) occupancies of 0.39 (3):0.61 (3), 0.47 (3):0.53 (3) and 0.65 (3):0.35 (3), respectively.  相似文献   

7.
The title compound, C18H18Cl4N2O2, crystallizes as monoclinic and orthorhombic polymorphs from CHCl3–CH3OH solution. In both polymorphic forms, the molecule lies on a crystallographic centre of inversion (at the piperazine ring centroid) and exhibits an intramolecular O—H...N hydrogen bond. In the monoclinic polymorph (space group P21/c), the molecules are linked by intermolecular C—H...Cl hydrogen bonds into a ribbon sheet built from R88(34) rings. In the orthorhombic polymorph (space group Pbcn), the molecules are linked by intermolecular C—H...O hydrogen bonds into a ribbon sheet of R66(34) rings. The sheets in the orthorhombic polymorph are crosslinked into a three‐dimensional framework by π–π stacking interactions.  相似文献   

8.
The title compound, 3‐[4‐(di­methyl­amino)­phenyl]‐1‐(2‐hydroxy­phenyl)­prop‐2‐en‐1‐one, C17H17NO2, is a chalcone derivative substituted by 2′‐hydroxyl and 4′′‐di­methyl­amino groups. The crystal structure indicates that the aniline and hydroxy­phenyl groups are nearly coplanar, with a dihedral angle of 10.32 (16)° between their phenyl rings. The molecular planarity of this substituted chalcone is strongly affected by the 2′‐hydroxyl group.  相似文献   

9.
In 4‐chloro‐7‐(2‐de­oxy‐β‐d ‐erythro‐pento­furanos­yl)‐7H‐pyr­rolo­[2,3‐d]­pyrimidine‐2,4‐diamine, C11H14ClN5O3, the conformation of the N‐glycosylic bond is between anti and high‐anti [χ = −102.5 (6)°]. The 2′‐deoxy­ribofuranosyl unit adopts the C3′‐endo‐C4′‐exo (3T4) sugar pucker (N‐type) with P = 19.6° and τm = 32.9° [terminology: Saenger (1989). Landolt‐Börnstein New Series, Vol. 1, Nucleic Acids, Subvol. a, edited by O. Madelung, pp. 1–21. Berlin: Springer‐Verlag]. The orientation of the exocyclic C4′—C5′ bond is +ap (trans) with a torsion angle γ = 171.5 (4)°. The compound forms a three‐dimensional network that is stabilized by four inter­molecular hydrogen bonds (N—H⋯O and O—H⋯N) and one intra­molecular hydrogen bond (N—H⋯Cl).  相似文献   

10.
Polymorphism is the ability of a solid material to exist in more than one form or crystal structure and this is of interest in the fields of crystal engineering and solid‐state chemistry. 2,2′‐(Disulfanediyl)dibenzoic acid (also called 2,2′‐dithiosalicylic acid, DTSA) is able to form different hydrogen bonds using its carboxyl groups. The central bridging S atoms allow the two terminal arene rings to rotate freely to generate various hydrogen‐bonded linking modes. DTSA can act as a potential host molecule with suitable guest molecules to develop new inclusion compounds. We report here the crystal structures of three new polymorphs of the inclusion compound of DTSA and trimethylamine, namely trimethylazanium 2‐[(2‐carboxyphenyl)disulfanyl]benzoate 2,2′‐(disulfanediyl)dibenzoic acid monosolvate, C3H10N+·C14H9O4S2·C14H10O4S2, (1), tetrakis(trimethylazanium) bis{2‐[(2‐carboxyphenyl)disulfanyl]benzoate} 2,2′‐(disulfanediyl)dibenzoate 2,2′‐(disulfanediyl)dibenzoic acid monosolvate, 4C3H10N+·2C14H9O4S2·C14H8O4S22−·C14H10O4S2, (2), and trimethylazanium 2‐[(2‐carboxyphenyl)disulfanyl]benzoate, C3H10N+·C14H9O4S2, (3). In the three polymorphs, DTSA utilizes its carboxyl groups to form conventional O—H…O hydrogen bonds to generate different host lattices. The central N atoms of the guest amine molecules accept H atoms from DTSA molecules to give the corresponding cations, which act as counter‐ions to produce the stable crystal structures via N—H…O hydrogen bonding between the host acid and the guest molecule. It is noticeable that although these three compounds are composed of the same components, the final crystal structures are totally different due to the various configurations of the host acid, the number of guest molecules and the inducer (i.e. ancillary experimental acid).  相似文献   

11.
In the nearly planar title compound, C15H10IN3, the three pyridine rings exhibit transoid conformations about the interannular C—C bonds. Very weak C—H...N and C—H...I interactions link the molecules into ribbons. Significant π–π stacking between molecules from different ribbons completes a three‐dimensional framework of intermolecular interactions. Four different packing motifs are observed among the known structures of simple 4′‐substituted terpyridines.  相似文献   

12.
4′‐Substituted derivatives of 2,2′:6′,2′′‐terpyridine with N‐containing heteroaromatic substituents, such as pyridyl groups, might be able to coordinate metal centres through the extra N‐donor atom, in addition to the chelating terpyridine N atoms. The incorporation of these peripheral N‐donor sites would also allow for the diversification of the types of noncovalent interactions present, such as hydrogen bonding and π–π stacking. The title compound, C24H16N4, consists of a 2,2′:6′,2′′‐terpyridine nucleus (tpy), with a pendant isoquinoline group (isq) bound at the central pyridine (py) ring. The tpy nucleus deviates slightly from planarity, with interplanar angles between the lateral and central py rings in the range 2.24 (7)–7.90 (7)°, while the isq group is rotated significantly [by 46.57 (6)°] out of this planar scheme, associated with a short Htpy…Hisq contact of 2.32 Å. There are no strong noncovalent interactions in the structure, the main ones being of the π–π and C—H…π types, giving rise to columnar arrays along [001], further linked by C—H…N hydrogen bonds into a three‐dimensional supramolecular structure. An Atoms In Molecules (AIM) analysis of the noncovalent interactions provided illuminating results, and while confirming the bonding character for all those interactions unquestionable from a geometrical point of view, it also provided answers for some cases where geometric parameters are not informative, in particular, the short Htpy…Hisq contact of 2.32 Å to which AIM ascribed an attractive character.  相似文献   

13.
Two new layered complexes with the formulas of {[Cu(H2O)(HL)2Cl](NO3)}n ( 1 ) and {[Cu(H2O)2(HL)2](NO3)2}n ( 2 ) were solvothermally synthesized by the reactions of the bulky conjugated 4′‐(4‐hydroxyphenyl)‐4,2′:6′,4′′‐terpyridine ligand (HL) with different CuII salts, which were further used as photocatalysts to achieve hydrogen production from water splitting. Single‐crystal structural analyses reveal that both complexes feature coplanar (4 4) layers with different connection manners between the HL extended Z‐shaped chains. More interestingly, 1 possessing more negative conduction band potential and higher structural stability exhibits a large hydrogen production rate of 2.43 mmol · g–1 · h–1, which is four times higher than that of 2 . Thus, the CuII‐based coordination polymers modified by the bulky conjugated organic ligand can become potentially promising non‐Pt photocatalysts for hydrogen production from water splitting.  相似文献   

14.
The title compound, C28H34N4O2, crystallizes simultaneously as a monoclinic, (Im), and a (twinned) triclinic polymorph, (It), from d6‐dimethyl sulfoxide. Polymorph (It) (P, Z = 1) displays the standard `ladder' packing for this group of compounds, with neighbouring inversion‐symmetric molecules related by translation and connected by hydrogen bonds of the form N—H...O=C. Polymorph (Im) (Cc, Z = 4) has no imposed symmetry; there are three independent hydrogen bonds, one classical N—H...O=C and a bifurcated system with N—H...O=C augmented by a short C—H...O=C interaction. Each molecule is thereby linked to four neighbouring molecules, two lower and two higher, so that a crosslinked three‐dimensional pattern is formed rather than the standard ladder.  相似文献   

15.
4, 4′,5, 5′‐Tetranitro‐2, 2′‐bisimidazole (TNBI) was synthesized by nitration of bisimidazole (BI) and recrystallized from acetone to form a crystalline acetone adduct. Its ammonium salt ( 1 ) was obtained by the reaction with gaseous ammonia. In order to explore new explosives or propellants several energetic nitrogen‐rich 2:1 salts such as the hydroxylammonium ( 3 ), guanidinium ( 4 ), aminoguanidinium ( 5 ), diaminoguanidinium ( 6 ) and triaminoguanidinium 7 4, 4′,5, 5′‐tetranitro‐2, 2′‐bisimidazolate were prepared by facile metathesis reactions. In addition, methylated 1, 1′‐dimethyl‐4, 4′,5, 5′‐tetranitro‐2, 2′‐bisimidazole (Me2TNBI, 8 ) was synthesized by the reaction of 2 and dimethyl sulfate. Metal salts of TNBI can also be easily synthesized by using the corresponding metal bases. This was proven by the synthesis of pyrotechnically relevant dipotassium 4, 4′,5, 5′‐tetranitro‐2, 2′‐bisimidazolate ( 2 ), which is a brilliant burning component e.g. in near‐infrared flares. All compounds were characterized by single crystal X‐ray diffraction, NMR and vibrational spectroscopy, elemental analysis and DSC. The sensitivities were determined by BAM methods (drophammer and friction tester). The heats of formation were calculated using CBS‐4M electronic enthalpies and the atomization method. With these values and mostly the X‐ray densities different detonation parameters were computed by the EXPLO5 computer code. Due to the great thermal stability and calculated energetic properties, especially guanidinium salt 4 could be served as a HNS replacement.  相似文献   

16.
The title compound, C23H28O2, was obtained from the reaction of acetone with meta‐cresol. The molecular structure consists of two identical subunits which are nearly perpendicular to each other. The oxygen‐containing rings are not planar and the molecule is chiral. The crystal structure consists of chains of molecules of the same chirality arranged along the [010] axis.  相似文献   

17.
Highly efficient intramolecular cyclization and of 2′‐hydroxychalcones to 4‐chloro‐2H‐chromenes under Vilsmeier conditions have been developed. In comparison with the reported methods, studies carried out indicate that Vilsmeier reagent generated in situ from DMF and bis(trichloromethyl) carbonate (BTC) provides excellent chemselectivity, higher yields and avoids the formation of inorganic phosphorus salts.  相似文献   

18.
The crystal packing of the title compound, C17H9Br2ClN2O, is governed by strong π–π stacking, where molecules are tightly bound within infinite (100) planes; these planes interact mainly through non‐optimal π–π stacking where arene rings are noticeably displaced from perfect overlap, and also through halogen–halogen interactions. The aldehyde group shows conformational disorder, with a significant population difference between the two conformers; this difference is rationalized by the energetic analysis of the crystal packing using the PIXEL method, which also allows a decomposition of intermolecular interaction energy into Coulombic, polarization, dispersion and repulsion contributions. Using such an analysis, it is found that the main reason for this unequal population of the two conformers in the crystal is two hydrogen bonds that are present only for the major conformer.  相似文献   

19.
The title compound, C17H13N3, is a versatile precursor for polymeric ter­pyridine derivatives and their metal complexes. The mol­ecule has transoid and near‐coplanar pyridine rings. However, the vinyl group is forced out of the plane of the terpyridyl moiety by a close H?H contact.  相似文献   

20.
The title methanol solvate, C24H22N4O5·CH3OH, forms an extended three‐dimensional hydrogen‐bonded structure, assisted by the presence of several good donor and acceptor sites. It shows none of the crystal packing features typically expected of piperazinediones, such as amide‐to‐amide R22(8) hydrogen bonding. In this structure the methanol solvent appears to play only a space‐filling role; it is not involved in any hydrogen bonding and instead is disordered over several sites. This study reports, to the best of our knowledge, the first crystal structure of an indane‐containing piperazinedione compound which exhibits a three‐dimensional hydrogen‐bonded structure formed by classical (N—H...O and N—H...N) hydrogen‐bonding interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号