首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study a random graph model which is a superposition of bond percolation on Zd with parameter p, and a classical random graph G(n,c/n). We show that this model, being a homogeneous random graph, has a natural relation to the so‐called “rank 1 case” of inhomogeneous random graphs. This allows us to use the newly developed theory of inhomogeneous random graphs to describe the phase diagram on the set of parameters c ≥ 0 and 0 ≤ p < pc, where pc = pc(d) is the critical probability for the bond percolation on Zd. The phase transition is of second order as in the classical random graph. We find the scaled size of the largest connected component in the supercritical regime. We also provide a sharp upper bound for the largest connected component in the subcritical regime. The latter is a new result for inhomogeneous random graphs with unbounded kernels. © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2010  相似文献   

2.
The edge‐percolation and vertex‐percolation random graph models start with an arbitrary graph G, and randomly delete edges or vertices of G with some fixed probability. We study the computational complexity of problems whose inputs are obtained by applying percolation to worst‐case instances. Specifically, we show that a number of classical ‐hard problems on graphs remain essentially as hard on percolated instances as they are in the worst‐case (assuming ). We also prove hardness results for other ‐hard problems such as Constraint Satisfaction Problems and Subset‐Sum, with suitable definitions of random deletions. Along the way, we establish that for any given graph G the independence number and the chromatic number are robust to percolation in the following sense. Given a graph G, let be the graph obtained by randomly deleting edges of G with some probability . We show that if is small, then remains small with probability at least 0.99. Similarly, we show that if is large, then remains large with probability at least 0.99. We believe these results are of independent interest.  相似文献   

3.
This paper studies the time constant for first‐passage percolation, and the Vickrey‐Clarke‐Groves (VCG) payment, for the shortest path on a ladder graph (a width‐2 strip) with random edge costs, treating both in a unified way based on recursive distributional equations. For first‐passage percolation where the edge costs are independent Bernoulli random variables we find the time constant exactly; it is a rational function of the Bernoulli parameter. For first‐passage percolation where the edge costs are uniform random variables we present a reasonably efficient means for obtaining arbitrarily close upper and lower bounds. Using properties of Harris chains we also show that the incremental cost to advance through the medium has a unique stationary distribution, and we compute stochastic lower and upper bounds. We rely on no special properties of the uniform distribution: the same methods could be applied to any well‐behaved, bounded cost distribution. For the VCG payment, with Bernoulli‐distributed costs the payment for an n‐long ladder, divided by n, tends to an explicit rational function of the Bernoulli parameter. Again, our methods apply more generally. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 38, 350‐364, 2011  相似文献   

4.
We study a variant of the classical bootstrap percolation process on Erd?s Rényi random graphs. The graphs we consider have inhibitory vertices obstructing the diffusion of activity and excitatory vertices facilitating it. We study both a synchronous and an asynchronous version of the process. Both begin with a small initial set of active vertices, and the activation spreads to all vertices for which the number of excitatory active neighbors exceeds the number of inhibitory active neighbors by a certain amount. We show that in the synchronous process, inhibitory vertices may cause unstable behavior: tiny changes in the size of the starting set can dramatically influence the size of the final active set. We further show that in the asynchronous model the process becomes stable and stops with an active set containing a nontrivial deterministic constant fraction of all vertices. Moreover, we show that percolation occurs significantly faster asynchronously than synchronously.  相似文献   

5.
Let G3‐out denote the random graph on vertex set [n] in which each vertex chooses three neighbors uniformly at random. Note that G3‐out has minimum degree 3 and average degree 6. We prove that the probability that G3‐out is Hamiltonian goes to 1 as n tends to infinity. © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

6.
Graph bootstrap percolation, introduced by Bollobás in 1968, is a cellular automaton defined as follows. Given a “small” graph H and a “large” graph , in consecutive steps we obtain from Gt by adding to it all new edges e such that contains a new copy of H. We say that G percolates if for some , we have Gt = Kn. For H = Kr, the question about the size of the smallest percolating graphs was independently answered by Alon, Frankl and Kalai in the 1980's. Recently, Balogh, Bollobás and Morris considered graph bootstrap percolation for and studied the critical probability , for the event that the graph percolates with high probability. In this paper, using the same setup, we determine, up to a logarithmic factor, the critical probability for percolation by time t for all © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 51, 143–168, 2017  相似文献   

7.
Consider the random graph process that starts from the complete graph on n vertices. In every step, the process selects an edge uniformly at random from the set of edges that are in a copy of a fixed graph H and removes it from the graph. The process stops when no more copies of H exist. When H is a strictly 2‐balanced graph we give the exact asymptotics on the number of edges remaining in the graph when the process terminates and investigate some basic properties namely the size of the maximal independent set and the presence of subgraphs.  相似文献   

8.
Let ? be a symmetric binary function, positive valued on positive arguments. A graph G = (V,E) is a ?‐tolerance graph if each vertex υ ∈ V can be assigned a closed interval Iυ and a positive tolerance tυ so that xyE ? | IxIy|≥ ? (tx,ty). An Archimedean function has the property of tending to infinity whenever one of its arguments tends to infinity. Generalizing a known result of [15] for trees, we prove that every graph in a large class (which includes all chordless suns and cacti and the complete bipartite graphs K2,k) is a ?‐tolerance graph for all Archimedean functions ?. This property does not hold for most graphs. Next, we present the result that every graph G can be represented as a ?G‐tolerance graph for some Archimedean polynomial ?G. Finally, we prove that there is a ?universal”? Archimedean function ? * such that every graph G is a ?*‐tolerance graph. © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 179–194, 2002  相似文献   

9.
We prove that ?‐linear GMRES for solving a class of ?‐linear systems is faster than GMRES applied to the related ?‐linear systems in terms of matrix–vector products. Numerical examples are given to demonstrate the theoretical result. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
We present a large‐deviations/thermodynamic approach to the classic problem of percolation on the complete graph. Specifically, we determine the large‐deviation rate function for the probability that the giant component occupies a fixed fraction of the graph while all other components are “small.” One consequence is an immediate derivation of the “cavity” formula for the fraction of vertices in the giant component. As a byproduct of our analysis we compute the large‐deviation rate functions for the probability of the event that the random graph is connected, the event that it contains no cycles and the event that it contains only small components. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2007  相似文献   

11.
The behavior of the random graph G(n,p) around the critical probability pc = is well understood. When p = (1 + O(n1/3))pc the components are roughly of size n2/3 and converge, when scaled by n?2/3, to excursion lengths of a Brownian motion with parabolic drift. In particular, in this regime, they are not concentrated. When p = (1 ‐ ?(n))pc with ?(n)n1/3 →∞ (the subcritical regime) the largest component is concentrated around 2??2 log(?3n). When p = (1 + ?(n))pc with ?(n)n1/3 →∞ (the supercritical regime), the largest component is concentrated around 2?n and a duality principle holds: other component sizes are distributed as in the subcritical regime. Itai Benjamini asked whether the same phenomenon occurs in a random d‐regular graph. Some results in this direction were obtained by (Pittel, Ann probab 36 (2008) 1359–1389). In this work, we give a complete affirmative answer, showing that the same limiting behavior (with suitable d dependent factors in the non‐critical regimes) extends to random d‐regular graphs. © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2010  相似文献   

12.
We determine an asymptotic formula for the number of labelled 2‐connected (simple) graphs on n vertices and m edges, provided that mn and m = O(nlog n) as n. This is the entire range of m not covered by previous results. The proof involves determining properties of the core and kernel of random graphs with minimum degree at least 2. The case of 2‐edge‐connectedness is treated similarly. We also obtain formulae for the number of 2‐connected graphs with given degree sequence for most (“typical”) sequences. Our main result solves a problem of Wright from 1983. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2013  相似文献   

13.
We use isoperimetric inequalities combined with a new technique to prove upper bounds for the site percolation threshold of plane graphs with given minimum degree conditions. In the process we prove tight new isoperimetric bounds for certain classes of hyperbolic graphs. This establishes the vertex isoperimetric constant for all triangular and square hyperbolic lattices, answering a question of Lyons and Peres. We prove that plane graphs of minimum degree at least 7 have site percolation threshold bounded away from 1/2, which was conjectured by Benjamini and Schramm, and make progress on a conjecture of Angel, Benjamini, and Horesh that the critical probability is at most 1/2 for plane triangulations of minimum degree 6. We prove additional bounds for stronger minimum degree conditions, and for graphs without triangular faces.  相似文献   

14.
A uniform attachment graph (with parameter k), denoted Gn,k in the paper, is a random graph on the vertex set [n], where each vertex v makes k selections from [v ? 1] uniformly and independently, and these selections determine the edge set. We study several aspects of this graph. Our motivation comes from two similarly constructed, well‐studied random graphs: k‐out graphs and preferential attachment graphs. In this paper, we find the asymptotic distribution of its minimum degree and connectivity, and study the expansion properties of Gn,k to show that the conductance of Gn,k is of order . We also study the bootstrap percolation on Gn,k, where r infected neighbors infect a vertex, and show that if the probability of initial infection of a vertex is negligible compared to then with high probability (whp) the disease will not spread to the whole vertex set, and if this probability exceeds by a sub‐logarithmical factor then the disease whp will spread to the whole vertex set.  相似文献   

15.
We consider changes in properties of a subgraph of an infinite graph resulting from the addition of open edges of Bernoulli percolation on the infinite graph to the subgraph. We give the triplet of an infinite graph, one of its subgraphs, and a property of the subgraphs. Then, in a manner similar to the way Hammersley’s critical probability is defined, we can define two values associated with the triplet. We regard the two values as certain critical probabilities, and compare them with Hammersley’s critical probability. In this paper, we focus on the following cases of a graph property: being a transient subgraph, having finitely many cut points or no cut points, being a recurrent subset, or being connected. Our results depend heavily on the choice of the triplet.Most results of this paper are announced in Okamura (2016) [24] without proofs. This paper gives full details of them.  相似文献   

16.
We consider a type of dependent percolation introduced in 2 , where it is shown that certain “enhancements” of independent (Bernoulli) percolation, called essential, make the percolation critical probability strictly smaller. In this study we first prove that, for two‐dimensional enhancements with a natural monotonicity property, being essential is also a necessary condition to shift the critical point. We then show that (some) critical exponents and the scaling limit of crossing probabilities of a two‐dimensional percolation process are unchanged if the process is subjected to a monotonic enhancement that is not essential. This proves a form of universality for all dependent percolation models obtained via a monotonic enhancement (of Bernoulli percolation) that does not shift the critical point. For the case of site percolation on the triangular lattice, we also prove a stronger form of universality by showing that the full scaling limit 12 , 13 is not affected by any monotonic enhancement that does not shift the critical point. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

17.
Percolation properties of the dead leaves model, also known as confetti percolation, are considered. More precisely, we prove that the critical probability for confetti percolation with square‐shaped leaves is 1/2. This result is related to a question of Benjamini and Schramm concerning disk‐shaped leaves and can be seen as a variant of the Harris‐Kesten theorem for bond percolation. The proof is based on techniques developed by Bollobás and Riordan to determine the critical probability for Voronoi and Johnson‐Mehl percolation. © 2014 Wiley Periodicals, Inc. Random Struct. Alg., 47, 361–385, 2015  相似文献   

18.
The classical Paiey-Wiener theorem and Hilbert space methods are used to show the existence of time-periodic solutions of the wave equation wtt?wrrw=h, 0 < r < + ∞, which are radially symmetric and have exponential decay as r → + ∞. This problem is obtained when considering a one-dimensional or three-dimensional problem, and should be thought of as a linearization of a semilinear problem in which the associated linear operator has point spectrum (? ∞, λ). When λ ? 0 there is uniqueness, otherwise there is a non-trivial finite-dimensional null space. Estimates on w, wt, wr are obtained, which show that in either case there is a continuous correspondence hw, where w is a uniquely characterized solution.  相似文献   

19.
A graph G is said to be ‐universal if it contains every graph on at most n vertices with maximum degree at most Δ. It is known that for any and any natural number Δ there exists such that the random graph G(n, p) is asymptotically almost surely ‐universal for . Bypassing this natural boundary, we show that for the same conclusion holds when . © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 50, 380–393, 2017  相似文献   

20.
The theme of this paper is the analysis of bootstrap percolation processes on random graphs generated by preferential attachment. This is a class of infection processes where vertices have two states: they are either infected or susceptible. At each round every susceptible vertex which has at least infected neighbours becomes infected and remains so forever. Assume that initially vertices are randomly infected, where is the total number of vertices of the graph. Suppose also that , where is the average degree. We determine a critical function such that when , complete infection occurs with high probability as , but when , then with high probability the process evolves only for a bounded number of rounds and the final set of infected vertices is asymptotically equal to .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号