首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the title compounds, C6H7N2O+·ClO4, (I), and C6H7N2O+·C2HO4, (II), the carboxamide plane is twisted from the plane of the protonated pyridine ring. Lamellar or sheet‐like structural features are observed through N—H⋯O and O—H⋯O hydrogen‐bonded motifs of cations and anions in (I) and (II), respectively. These sheets are aggregated through C(4) and C(5) chain motifs in (I) and (II), respectively. R12(4) ring motifs in (I) and R12(5) motifs in (II) are formed via pyridine–anion bifurcated N—H⋯O inter­actions. In (II), carboxamide groups form N—H⋯O dimers around the inversion centres of the unit cell, with R22(8) ring motifs. A 21 screw‐related helical or ribbon‐like structure along the b axis is formed in (II) through carboxamide and pyridinium N—H⋯O hydrogen bonds with the oxalate anions.  相似文献   

2.
The crystal structures of the two title (E)‐stilbazolium halogenates, C20H17ClNO+·Cl and C20H17BrNO+·Br, are isomorphous, with an isostructurality index of 0.985. The azastyryl fragments are almost planar, with dihedral angles between the benzene and pyridine rings of ca 4.5°. The rings of the benzyl groups are, in turn, almost perpendicular to the azastyryl planes, with dihedral angles larger than 80°. The cations and anions are connected by O—H...X (X = halogen) hydrogen bonds. The halide anions are `sandwiched' between the charged pyridinium rings of neighbouring molecules, and weak C—H...O hydrogen bonds and C—H...X and C—H...π interactions also contribute to the crystal structures.  相似文献   

3.
To enable a comparison between a C—H…X hydrogen bond and a halogen bond, the structures of two fluorous‐substituted pyridinium iodide salts have been determined. 4‐[(2,2‐Difluoroethoxy)methyl]pyridinium iodide, C8H10F2NO+·I, (1), has a –CH2OCH2CF2H substituent at the para position of the pyridinium ring and 4‐[(3‐chloro‐2,2,3,3‐tetrafluoropropoxy)methyl]pyridinium iodide, C9H9ClF4NO+·I, (2), has a –CH2OCH2CF2CF2Cl substituent at the para position of the pyridinium ring. In salt (1), the iodide anion is involved in one N—H…I and three C—H…I hydrogen bonds, which, together with C—H…F hydrogen bonds, link the cations and anions into a three‐dimensional network. For salt (2), the iodide anion is involved in one N—H…I hydrogen bond, two C—H…I hydrogen bonds and one C—Cl…I halogen bond; additional C—H…F and C—F…F interactions link the cations and anions into a three‐dimensional arrangement.  相似文献   

4.
The title compound, [H2bipy](ClO4)2 or C10H10N22+·2ClO4?, was obtained at the interface between an organic (2,2′‐bi­pyridine in methanol) and an aqueous phase (perchloric acid in water). The compound crystallizes in space group P and comprises discrete diprotonated trans‐bipyridinium cations, [H2bipy]2+, and ClO4? anions. The cations and anions are connected through N—H?O and C—H?O hydrogen bonds [distances N?O 2.817 (4) and 2.852 (4) Å, and C?O 3.225 (6)–3.412 (5)Å]. The C—C bond distance between the two rings is 1.452 (5) Å. The bipyridinium cation has a trans conformation and the N—C—C—N torsion angle is 152.0 (3)°.  相似文献   

5.
The title dicadmium compound, [Cd2(C10H8N2)5(H2O)6](C7H6NO2)2(ClO4)2·2H2O, is located around an inversion centre. Each CdII centre is coordinated by three N atoms from three different 4,4′‐bipyridine ligands and three O atoms from three coordinating water molecules in a distorted octahedral coordination environment. In the dicadmium cation unit, one 4,4′‐bipyridine (4,4′‐bipy) molecule acts as a bidentate bridging ligand between two Cd metal ions, while the other four 4,4′‐bipy molecules act only as monodentate terminal ligands, resulting in a rare `H‐type' [Cd2(C10H8N2)5(H2O)6] host unit. These host units are connected to each other viaπ–π stacking interactions, giving rise to a three‐dimensional supramolecular grid network with large cavities. The 3‐aminobenzoate anions, perchlorate anions and water molecules are encapsulated in the cavities by numerous hydrogen‐bonding interactions. To the best of our knowledge, this is the first example of a coordination compound based on both 4,4′‐bipyridine ligands together with discrete 3‐aminobenzoate anions.  相似文献   

6.
The title compound, {(C12H12N2)[V2F6O2(H2O)2]}n, features a novel extended‐chain moiety, [VOF2F2/2(H2O)]n, comprising trans vertex‐connected VOF4(H2O) octahedra. The octahedra themselves show the characteristic distortion due to the off‐centring of the V4+ ion, such that a short terminal V=O bond and an elongated trans V—OH2 bond are present. Hydrogen bonding from the water molecules to terminal F atoms in adjacent chains generates associated chain dimers, which are loosely linked into sheets via additional hydrogen bonding involving the organic moieties. Structural relationships with previously described vanadium oxyfluoride species are briefly discussed.  相似文献   

7.
The title compound, (C10H10N2S)[CuCl4], was obtained by the reaction of cupric chloride with pyridine‐4‐thiol in a mixture of aceto­nitrile and tetra­hydro­furan, suggesting that the desulfurization and coupling reactions of pyridine‐4‐thiol occurred in the presence of the Cu2+ ion. X‐ray diffraction analysis reveals the presence of one 4,4′‐thio­dipyridinium cation, H2bps2+, and one [CuCl4]2− anion. The cations interact with the anions via N—H⋯Cl hydrogen‐bonding interactions to form a closed `chair' conformation.  相似文献   

8.
The molecule of N,N′‐bis(4‐pyridylmethyl)oxalamide, C14H14N4O2, (I) or 4py‐ox, has an inversion center in the middle of the oxalamide group. Adjacent molecules are then linked through intermolecular N—H...N and C—H...O hydrogen bonds, forming an extended supramolecular network. 4,4′‐{[Oxalylbis(azanediyl)]dimethylene}dipyridinium dinitrate, C14H16N4O22+·2NO3, (II), contains a diprotonated 4py‐ox cation and two nitrate counter‐anions. Each nitrate ion is hydrogen bonded to four 4py‐ox cations via intermolecular N—H...O and C—H...O interactions. Adjacent 4py‐ox cations are linked through weak C—H...O hydrogen bonding between an α‐pyridinium C atom and an oxalamide O atom, forming a two‐dimensional extended supramolecular network.  相似文献   

9.
4,4′‐Bipyrazolium [or 4‐(1H‐pyrazol‐4‐yl)pyrazolium] bromide monohydrate, C6H7N4+·Br·H2O, and 4,4′‐bipyrazolium perchlorate monohydrate, C6H7N4+·ClO4·H2O, have closely related layered structures involving tight stacks of antiparallel N—H⋯N hydrogen‐bonded polar bipyrazolium chains [N⋯N = 2.712 (3) and 2.742 (2) Å], which are crosslinked by hydrogen bonds with water mol­ecules and counter‐anions.  相似文献   

10.
In the title centrosymmetric binuclear complex, [Cu2(C14H11N2O3)2(H2O)2](NO3)2, the two metal centres are bridged by the phenolate O atoms of the ligand, forming a Cu2O2 quadrangle. Each Cu atom has a distorted square‐pyramidal geometry, with the basal donor atoms coming from the O,N,O′‐tridentate ligand and a symmetry‐related phenolate O atom. The more weakly bound apical donor O atom is supplied by a coordinated water molecule. When a further weak Cu...O interaction with the 4‐hydroxy O atom of a neighbouring cation is considered, the extended coordination sphere of the Cu atom can be described as distorted octahedral. This interaction leads to two‐dimensional layers, which extend parallel to the (100) direction. The two‐dimensional polymeric structure contrasts with other reported structures involving salicylaldehyde benzoylhydrazone ligands, which are usually discrete mono‐ or dinuclear Cu complexes. The nitrate anions are involved in a three‐dimensional hydrogen‐bonding network, featuring intermolecular N—H...O and O—H...O hydrogen bonds.  相似文献   

11.
The design of new organic–inorganic hybrid ionic materials is of interest for various applications, particularly in the areas of crystal engineering, supramolecular chemistry and materials science. The monohalogenated intermediates 1‐(2‐chloroethyl)pyridinium chloride, C5H5NCH2CH2Cl+·Cl, (I′), and 1‐(2‐bromoethyl)pyridinium bromide, C5H5NCH2CH2Br+·Br, (II′), and the ionic disubstituted products 1,1′‐(ethylene‐1,2‐diyl)dipyridinium dichloride dihydrate, C12H14N22+·2Cl·2H2O, (I), and 1,1′‐(ethylene‐1,2‐diyl)dipyridinium dibromide, C12H14N22+·2Br, (II), have been isolated as powders from the reactions of pyridine with the appropriate 1,2‐dihaloethanes. The monohalogenated intermediates (I′) and (II′) were characterized by multinuclear NMR spectroscopy, while (I) and (II) were structurally characterized using powder X‐ray diffraction. Both (I) and (II) crystallize with half the empirical formula in the asymmetric unit in the triclinic space group P. The organic 1,1′‐(ethylene‐1,2‐diyl)dipyridinium dications, which display approximate C2h symmetry in both structures, are situated on inversion centres. The components in (I) are linked via intermolecular O—H…Cl, C—H…Cl and C—H…O hydrogen bonds into a three‐dimensional framework, while for (II), they are connected via weak intermolecular C—H…Br hydrogen bonds into one‐dimensional chains in the [110] direction. The nucleophilic substitution reactions of 1,2‐dichloroethane and 1,2‐dibromoethane with pyridine have been investigated by ab initio quantum chemical calculations using the 6–31G** basis. In both cases, the reactions occur in two exothermic stages involving consecutive SN2 nucleophilic substitutions. The isolation of the monosubstituted intermediate in each case is strong evidence that the second step is not fast relative to the first.  相似文献   

12.
《Electroanalysis》2006,18(4):417-422
In dimethylformamide containing tetramethylammonium tetrafluoroborate, cyclic voltammograms for reduction of 4,4′‐(2,2,2‐trichloroethane‐1,1‐diyl)bis(chlorobenzene) (DDT) at a glassy carbon cathode exhibit five waves, whereas three waves are observed for the reduction of 4,4′‐(2,2‐dichloroethane‐1,1‐diyl)bis(chlorobenzene) (DDD). Bulk electrolyses of DDT and DDD afford 4,4′‐(ethene‐1,1‐diyl)bis(chlorobenzene) (DDNU) as principal product (67–94%), together with 4,4′‐(2‐chloroethene‐1,1‐diyl)bis(chlorobenzene) (DDMU), 1‐chloro‐4‐styrylbenzene, and traces of both 1,1‐diphenylethane and 4,4′‐(ethane‐1,1‐diyl)bis(chlorobenzene) (DDO). For electrolyses of DDT and DDD, the coulometric n values are essentially 4 and 2, respectively. When DDT is reduced in the presence of a large excess of D2O, the resulting DDNU and DDMU are almost fully deuterated, indicating that reductive cleavage of the carbon–chlorine bonds of DDT is a two‐electron process that involves carbanion intermediates. A mechanistic scheme is proposed to account for the formation of the various products.  相似文献   

13.
A crystallographic investigation of the title compound, C22H28Cl2N4O4, using crystals obtained under different crystallization conditions, revealed the presence of two distinct polymorphic forms. The molecular conformation in the two polymorphs is very different: one adopts a `C' shape, whereas the other adopts an `S' shape. In the latter, the molecule lies across a crystallographic twofold axis. The `S'‐shaped polymorph undergoes a reversible orthorhombic‐to‐monoclinic phase transition on cooling, whereas the structure of the `C'‐shaped polymorph is temperature insensitive.  相似文献   

14.
In the title compound, (C10H9N2)2[Pt(CN)6]·2C10H8N2 or [(Hbpy)+]2[Pt(CN)6]2−·2bpy, where bpy is 4,4′‐bipyridine, the Hbpy+ cations and bpy mol­ecules form a hydrogen‐bonded two‐dimensional cationic approximately square grid parallel to the (110) plane. The [Pt(CN)6]2− dianions reside in the cavities within this grid, with the nitrile N atoms forming weak hydrogen bonds with the CH groups in the cationic lattice.  相似文献   

15.
Structure analyses of 4,4′‐bis(4‐hydroxy­butyl)‐2,2′‐bi­pyridine, C18H24N2O2, (I), and 4,4′‐bis(4‐bromo­butyl)‐2,2′‐bi­pyridine, C18H22Br2N2, (II), reveal intermolecular hydrogen bonding in both compounds. For (I), O—H·N intermolecular hydrogen bonding leads to the formation of an infinite two‐dimensional polymer, and π stacking interactions are also observed. For (II), C—H·N intermolecular hydrogen bonding leads to the formation of a zigzag polymer. The two compounds crystallize in different crystal systems, but both mol­ecules possess Ci symmetry, with one half mol­ecule in the asymmetric unit.  相似文献   

16.
The title compounds, C15H16ClN2O+·Br·1.5H2O and C15H16BrN2O+·Br·1.5H2O, are isomorphous. The benzene ring is oriented nearly normal to the pyridine ring in both compounds. The molecular packing is mainly influenced by intermolecular O—H⋯O and O—H⋯Br interactions, as well as weak intramolecular C—H⋯O interactions. The H2OBr units form an extended water–bromide chain, with a bridging water mol­ecule on a twofold axis.  相似文献   

17.
The structure of a manganese(II) complex of terpyridine functionalized with acetylsulfanyl‐terminated hexyloxy chains, [Mn(C23H25N3O2S)2](PF6)2, is described. This type of complex is of interest in the study of single‐molecule transport properties in open‐shell systems. The manganese coordination environment is distorted octahedral but, importantly, with no larger deviations from the idealized geometry than those observed for other metal–terpyridine complexes. The Mn—N bond lengths range from 2.192 (2) to 2.272 (3) Å. The title compound crystallizes with the cation and anions all on general positions, with the hexafluorophosphate anions exhibiting orientational disorder. When compared with other bis‐terpyridine complexes, this structure demonstrates that manganese(II) is no more prone to undergo low‐symmetry distortions than systems with ligand field stabilization energy contributions.  相似文献   

18.
In both title compounds, C18H24N2O2, (Ia), and C18H26N2O22+·2ClO4, (II), respectively, the two aryl rings are strictly parallel, with an inversion centre lying at the mid‐point of each central CH2—CH2 bond. Molecules in (Ia) are linked into two‐dimensional layers by N—H...O hydrogen bonds. The component ions in (II) are joined together by a combination of N/O/C—H...O hydrogen bonds and C—H...π and anion...π interactions, forming a three‐dimensional network. A structural understanding of (Ia) and (II) may provide some useful information about how and why their metal–organic complexes display various biological activities and function in catalytic processes.  相似文献   

19.
The 4‐chloro‐ [C14H11ClN2O2, (I)], 4‐bromo‐ [C14H10BrN2O2, (II)] and 4‐diethylamino‐ [C18H21N3O2, (III)] derivatives of benzylidene‐4‐hydroxybenzohydrazide, all crystallize in the same space group (P21/c), (I) and (II) also being isomorphous. In all three compounds, the conformation about the C=N bond is E. The molecules of (I) and (II) are relatively planar, with dihedral angles between the two benzene rings of 5.75 (12) and 9.81 (17)°, respectively. In (III), however, the same angle is 77.27 (9)°. In the crystal structures of (I) and (II), two‐dimensional slab‐like networks extending in the a and c directions are formed via N—H...O and O—H...O hydrogen bonds. The molecules stack head‐to‐tail viaπ–π interactions involving the aromatic rings [centroid–centroid distance = 3.7622 (14) Å in (I) and 3.8021 (19) Å in (II)]. In (III), undulating two‐dimensional networks extending in the b and c directions are formed via N—H...O and O—H...O hydrogen bonds. The molecules stack head‐to‐head viaπ–π interactions involving inversion‐related benzene rings [centroid–centroid distances = 3.6977 (12) and 3.8368 (11) Å].  相似文献   

20.
The di­chloro­methane disolvate of 4,4′‐(azino­di­methyl­ene)­dipyridinium chloranilate, C12H12N42+·C6Cl2O42−·2CH2Cl2, con­sists of one‐dimensional hydrogen‐bonded molecular tapes that propagate along the [10] direction. Both cations and anions lie across centres of inversion. The molecular tapes are planar but do not stack in the expected segregated manner, instead having chloranilate anions sandwiched between azine groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号