首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The structures of the three title isomers, namely 4‐(2‐methyl­anilino)pyridine‐3‐sulfonamide, (I), 4‐(3‐methyl­anilino)pyridine‐3‐sulfonamide, (II), and 4‐(4‐methyl­anilino)pyridine‐3‐sulfonamide, (III), all C12H13N3O2S, differ in their hydrogen‐bonding arrangements. In all three mol­ecules, the conformation of the 4‐amino­pyridine‐3‐sulfon­amide moiety is conserved by an intra­molecular N—H⋯O hydrogen bond and a C—H⋯O inter­action. In the supra­mol­ecular structures of all three isomers, similar C(6) chains are formed via inter­molecular N—H⋯N hydrogen bonds. N—H⋯O hydrogen bonds lead to C(4) chains in (I), and to R22(8) centrosymmetric dimers in (II) and (III). In each isomer, the overall effect of all hydrogen bonds is to form layer structures.  相似文献   

2.
The title compounds, C10H12N4, (I), and C9H10N4, (II), have been synthesized and characterized both spectroscopically and structurally. The dihedral angles between the triazole and benzene ring planes are 26.59 (9) and 42.34 (2)°, respectively. In (I), mol­ecules are linked principally by N—H⋯N hydrogen bonds involving the amino NH2 group and a triazole N atom, forming R44(20) and R24(10) rings which link to give a three‐dimensional network of mol­ecules. The hydrogen bonding is supported by two different C—H⋯π inter­actions from the tolyl ring to either a triazole ring or a tolyl ring in neighboring mol­ecules. In (II), inter­molecular hydrogen bonds and C—H⋯π inter­actions produce R34(15) and R44(21) rings.  相似文献   

3.
The title compounds, C8H11NO, (I), and 2C8H12NO+·C4H4O42−, (II), both crystallize in the monoclinic space group P21/c. In the crystal structure of (I), intermolecular O—H...N hydrogen bonds combine the molecules into polymeric chains extending along the c axis. The chains are linked by C—H...π interactions between the methylene H atoms and the pyridine rings into polymeric layers parallel to the ac plane. In the crystal structure of (II), the succinate anion lies on an inversion centre. Its carboxylate groups interact with the 2‐ethyl‐3‐hydroxy‐6‐methylpyridinium cations via intermolecular N—H...O hydrogen bonds with the pyridine ring H atoms and O—H...O hydrogen bonds with the hydroxy H atoms to form polymeric chains, which extend along the [01] direction and comprise R44(18) hydrogen‐bonded ring motifs. These chains are linked to form a three‐dimensional network through nonclassical C—H...O hydrogen bonds between the pyridine ring H atoms and the hydroxy‐group O atoms of neighbouring cations. π–π interactions between the pyridine rings and C—H...π interactions between the methylene H atoms of the succinate anion and the pyridine rings are also present in this network.  相似文献   

4.
In the title compounds, C7H8NO2+·Br, (I), and C7H8NO2+·I, (II), the asymmetric unit contains a discrete 3‐carboxyanilinium cation, with a protonated amine group, and a halide anion. The compounds are not isostructural, and the crystal structures of (I) and (II) are characterized by different two‐dimensional hydrogen‐bonded networks. The ions in (I) are connected into ladder‐like ribbons via N—H...Br hydrogen bonds, while classic cyclic O—H...O hydrogen bonds between adjacent carboxylic acid functions link adjacent ribbons to give three characteristic graph‐set motifs, viz. C21(4), R42(8) and R22(8). The ions in (II) are connected via N—H...I, N—H...O and O—H...I hydrogen bonds, also with three characteristic graph‐set motifs, viz. C(7), C21(4) and R42(18), but an O—H...O interaction is not present.  相似文献   

5.
The structures of N‐ethyl‐3‐(4‐fluoro­phen­yl)‐5‐(4‐methoxy­phen­yl)‐2‐pyrazoline‐1‐thio­carboxamide, C19H20FN3OS, (I), and 3‐(4‐fluoro­phen­yl)‐N‐methyl‐5‐(4‐methyl­phen­yl)‐2‐pyrazoline‐1‐thio­carboxamide, C18H18FN3S, (II), have similar geometric parameters. The meth­oxy/methyl‐substituted phenyl groups are almost perpendicular to the pyrazoline (pyraz) ring [inter­planar angles of 89.29 (8) and 80.39 (10)° for (I) and (II), respectively], which is coplanar with the fluoro­phenyl ring [inter­planar angles of 5.72 (9) and 10.48 (10)°]. The pyrazoline ring approximates an envelope conformation in both structures, with the two‐coordinate N atom involved in an intra­molecular N—H⋯Npyraz inter­action. In (I), N—H⋯O and C—H⋯S inter­molecular hydrogen bonds are the primary inter­actions, whereas in (II), there are no intermolecular hydrogen bonds.  相似文献   

6.
Aminopyrimidine derivatives are biologically important as they are components of nucleic acids and drugs. The crystals of two new salts, namely cytosinium 6‐chloronicotinate monohydrate, C4H6N3O+·C6H3ClNO2·H2O, ( I ), and 5‐bromo‐6‐methylisocytosinium hydrogen sulfate (or 2‐amino‐5‐bromo‐4‐oxo‐6‐methylpyrimidinium hydrogen sulfate), C5H7BrN3O+·HSO4, ( II ), have been prepared and characterized by single‐crystal X‐ray diffraction. The pyrimidine ring of both compounds is protonated at the imine N atom. In hydrated salt ( I ), the primary R22(8) ring motif (supramolecular heterosynthon) is formed via a pair of N—H…O(carboxylate) hydrogen bonds. The cations, anions and water molecule are hydrogen bonded through N—H…O, N—H…N, O—H…O and C—H…O hydrogen bonds, forming R22(8), R32(7) and R55(21) motifs, leading to a hydrogen‐bonded supramolecular sheet structure. The supramolecular double sheet structure is formed via water–carboxylate O—H…O hydrogen bonds and π–π interactions between the anions and the cations. In salt ( II ), the hydrogen sulfate ions are linked via O—H…O hydrogen bonds to generate zigzag chains. The aminopyrimidinium cations are embedded between these zigzag chains. Each hydrogen sulfate ion bridges two cations via pairs of N—H…O hydrogen bonds and vice versa, generating two R22(8) ring motifs (supramolecular heterosynthon). The cations also interact with one another via halogen–halogen (Br…Br) and halogen–oxygen (Br…O) interactions.  相似文献   

7.
In 2,4‐diamino‐6‐methyl‐1,3,5‐triazin‐1‐ium (acetoguanaminium) hydrogen phthalate, C4H8N5+·C8H5O4, (I), acetoguanaminium hydrogen maleate, C4H8N5+·C4H3O4, (II), and acetoguanaminium 3‐hydroxypicolinate monohydrate, C4H8N5+·C6H4NO3·H2O, (III), the acetoguanaminium cations interact with the carboxylate groups of the corresponding anions via a pair of nearly parallel N—H...O hydrogen bonds, forming R22(8) ring motifs. In (II) and (III), N—H...N base‐pairing is observed, while there is none in (I). In (II), a series of fused R32(8), R22(8) and R32(8) hydrogen‐bonded rings plus fused R22(8), R62(12) and R22(8) ring motifs occur alternately, aggregating into a supramolecular ladder‐like arrangement. In (III), R22(8) motifs occur on either side of a further ring formed by pairs of N—H...O hydrogen bonds, forming an array of three fused hydrogen‐bonded rings. In (I) and (II), the anions form a typical intramolecular O—H...O hydrogen bond with graph set S(7), whereas in (III) an intramolecular hydrogen bond with graph set S(6) is formed.  相似文献   

8.
In the title compound, C10H9N2+·C9H5INO4S·2H2O, the 4,4′‐bi­pyridine mol­ecule is protonated at one of the pyridine N atoms. These moieties self‐assemble into a supramolecular chain along the a axis through N—H⋯N hydrogen bonds. The quinolinol OH group acts as a donor with respect to a sulfonate O atom [O—H⋯O(sulfonate)] and acts as an acceptor with respect to a C—H group of ferron [C—H⋯O(hydroxy)], forming a supramolecular chain along the b axis. These two types of supramolecular chains (one type made up of bi­pyridine motifs and the other made up of sulfoxine motifs) interact viaπ–π stacking, generating a three‐dimensional framework. These chains are further crosslinked by C—­H⋯O hydrogen bonds and O—H⋯O hydrogen bonds involving water mol­ecules.  相似文献   

9.
Tartronic acid forms a hydrogen‐bonded complex, C5H5NO·C3H4O5, (I), with 2‐pyridone, while it forms acid salts, namely 3‐hydroxy­pyridinium hydrogen tartronate, (II), and 4‐hy­droxy­pyridinium hydrogen tartronate, (III), both C5H6NO+·C3H3O5, with 3‐hydroxy­pyridine and 4‐hydroxy­pyridine, respectively. In (I), the pyridone mol­ecules and the acid mol­ecules form R(8) and R(10) hydrogen‐bonded rings, respectively, around the inversion centres. In (II) and (III), the cations and anions are linked by N—H⋯O and O—H⋯O hydrogen bonds to form a hydrogen‐bonded chain. In each of (I), (II) and (III), an intermolecular hydrogen bond is formed between a carboxyl group and the hydroxyl group attached to the central C atom, and in (I), the hydroxyl group participates in an intramolecular hydrogen bond with a carbonyl group. No intermolecular hydrogen bond is formed between the carboxyl groups in (I), or between the carboxyl and carboxyl­ate groups in (II) and (III).  相似文献   

10.
The crystal structures of the title compounds, viz. C24H14F2N2O2, (I), and C25H17FN2O2, (II), respectively, have been determined in order to unravel the role of an ordered F atom in generating stable supra­molecular assemblies. On changing the substitution from fluorine to a methyl group, C—H⋯F inter­actions are replaced by C—H⋯π inter­actions, revealing the importance of such weak inter­actions when present alongside N—H⋯O and C—H⋯O hydrogen bonds. The dihedral angle between the planes of the 4‐fluoro­phenyl ring and the pyridine ring is 26.8 (1)° in (I), while that between the planes of the 4‐methyl­phenyl and pyridine rings is 29.5 (1)° in (II).  相似文献   

11.
Crystallization of 2‐amino‐4‐chloro‐6‐morpholino­pyrimidine, C8H11ClN4O, (I), yields two polymorphs, both with space group P21/c, having Z′ = 1 (from diethyl ether solution) and Z′ = 2 (from di­chloro­methane solution), denoted (Ia) and (Ib), respectively. In polymorph (Ia), the mol­ecules are linked by an N—H⋯O and an N—H⋯N hydrogen bond into sheets built from alternating R(8) and R(40) rings. In polymorph (Ib), one mol­ecule acts as a triple acceptor of hydrogen bonds and the other acts as a single acceptor; one N—H⋯O and three N—H⋯N hydrogen bonds link the mol­ecules in a complex chain containing two types of R(8) and one type of R(18) ring. 2‐Amino‐4‐chloro‐6‐piperidino­pyrimidine, C9H13ClN4, (II), which is isomorphous with polymorph (Ib), also has Z′ = 2 in P21/c, and the mol­ecules are linked by three N—­H⋯N hydrogen bonds into a centrosymmetric four‐mol­ecule aggregate containing three R(8) rings.  相似文献   

12.
Regorafenib {systematic name: 4‐[4‐({[4‐chloro‐3‐(trifluoromethy)phenyl]carbamoyl}amino)‐3‐fluorophenoxy]‐1‐methylpyridine‐2‐carboxamide}, C21H15ClF4N4O3, is a potent anticancer and anti‐angiogenic agent that possesses various activities on the VEGFR, PDGFR, raf and/or flt‐3 kinase signaling molecules. The compound has been crystallized as polymorphic form I and as the monohydrate, C21H15ClF4N4O3·H2O. The regorafenib molecule consists of biarylurea and pyridine‐2‐carboxamide units linked by an ether group. A comparison of both forms shows that they differ in the relative orientation of the biarylurea and pyridine‐2‐carboxamide units, due to different rotations around the ether group, as measured by the C—O—C bond angles [119.5 (3)° in regorafenib and 116.10 (15)° in the monohydrate]. Meanwhile, the conformational differences are reflected in different hydrogen‐bond networks. Polymorphic form I contains two intermolecular N—H…O hydrogen bonds, which link the regorafenib molecules into an infinite molecular chain along the b axis. In the monohydrate, the presence of the solvent water molecule results in more abundant hydrogen bonds. The water molecules act as donors and acceptors, forming N—H…O and O—H…O hydrogen‐bond interactions. Thus, R42(28) ring motifs are formed, which are fused to form continuous spiral ring motifs along the a axis. The (trifluoromethyl)phenyl rings protrude on the outside of these motifs and interdigitate with those of adjacent ring motifs, thereby forming columns populated by halogen atoms.  相似文献   

13.
The crystal structure determinations of picolinamidium squarate, C6H7N2O+·C4O4, (I), and di‐p‐toluidinium squarate dihydrate, 2C7H10N+·C4O42−·2H2O, (II), are reported. While salt formation occurs by donation of one H atom from squaric acid to the picolin­amide mol­ecule in (I), in compound (II), each squaric acid mol­ecule donates one H atom to the p‐toluidine N atom of two trans p‐toluidine molecules. In (I), the pyridine ring is coplanar with the squarate monoanion through imposed crystallographic mirror symmetry; in (II), the dihedral angle between the p‐toluidine moiety and the squarate dianion is 70.71 (1)°. In (I), a three‐dimensional structure is formed via van der Waals interactions between parallel planes of mol­ecules, with hydrogen‐bond interactions (N—H⋯O and O—H⋯O) acting within the planes; hydrogen bonds form a three‐dimensional network in (II).  相似文献   

14.
The crystal structures of two para‐substituted aryl derivatives of pyridine‐2‐carboxamide, namely N‐(4‐fluorophenyl)pyridine‐2‐carboxamide, C12H9FN2O, (I), and N‐(4‐nitrophenyl)pyridine‐2‐carboxamide, C12H9N3O3, (II), have been studied. Compound (I) exhibits unconventional aryl–carbonyl C—H...O and pyridine–fluorine C—H...F hydrogen bonding in two dimensions and well defined π‐stacking involving pyridine rings in the third dimension. The conformation of (II) is more nearly planar than that of (I) and the intermolecular interactions comprise one‐dimensional aryl–carbonyl C—H...O hydrogen bonds leading to a stepped or staircase‐like progression of loosely π‐stacked molecules. The close‐packed layers of planar π‐stacked molecules are related by inversion symmetry. Two alternating interplanar separations of 3.439 (1) and 3.476 (1) Å are observed in the crystal lattice and are consistent with a repetitive packing sequence, ABABAB…, for the π‐stacked inversion pairs of (II).  相似文献   

15.
In the title compounds, 4‐carboxyanilinium bromide, C7H8NO2+·Br, (I), and 4‐acetylanilinium bromide, C8H10NO+·Br, (II), each asymmetric unit contains a discrete cation with a protonated amino group and a halide anion. Both crystal structures are characterized by two‐dimensional hydrogen‐bonded networks. The ions in (I) are connected via N—H...Br, N—H...O and O—H...Br hydrogen bonds, with three characteristic graph‐set motifs, viz. C(8), C21(4) and R32(8). The centrosymmetric hydrogen‐bonded R22(8) dimer motif characteristic of carboxylic acids is absent. The ions in (II) are connected via N—H...Br and N—H...O hydrogen bonds, with two characteristic graph‐set motifs, viz. C(8) and R42(8). The significance of this study lies in its illustration of the differences between the supramolecular aggregations in two similar compounds. The presence of the methyl group in (II) at the site corresponding to the hydroxyl group in (I) results in a significantly different hydrogen‐bonding arrangement.  相似文献   

16.
In the crystal structure of the title compound, C6H10N3+·C7H5O3, the asymmetric unit contains four crystallographically independent 2‐amino‐4,6‐dimethyl­pyrimidinium and salicylate ions (Z = 8). In each of these, one of the pyrimidine N atoms is protonated, and the carboxyl­ate group of the salicylate ion inter­acts with the pyrimidine group through a pair of N—H⋯O hydrogen bonds, forming an R22(8) motif. The pyrimidine cations also form base pairs via a pair of N—H⋯N hydrogen bonds (involving the amino group and the unprotonated ring N atom), forming another R22(8) motif. Three such R22(8) motifs, fused together, constitute a closed cyclic aggregate, and the linking of these aggregates, arranged in consecutive layers, can be analysed in terms of off‐face stacking inter­actions.  相似文献   

17.
The title compound, C8H8NO4+·Cl·H2O, is the chloro­hydrated form of 2‐amino­benzene‐1,4‐dicarboxylic acid, the basic crystal structure of which is still not known. Mol­ecules are linked by classical N—H⋯O, O—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds, mainly along the mol­ecular plane, into sheets built by unusual R64(26), R64(22) and R43(22) rings. The stacking between layers is stabilized by another N—H⋯Cl hydrogen bond and by π–π inter­actions between aromatic rings facing each other.  相似文献   

18.
19.
In the title compounds, C10H8N2O2, (I), and C12H12N2O2, (II), the two carbonyl groups are oriented with torsion angles of −149.3 (3) and −88.55 (15)°, respectively. The single‐bond distances linking the two carbonyl groups are 1.528 (4) and 1.5298 (17) Å, respectively. In (I), the molecules are linked by an elaborate system of N—H...O hydrogen bonds, which form adjacent R22(8) and R42(8) ring motifs to generate a ladder‐like construct. Adjacent ladders are further linked by N—H...O hydrogen bonds to build a three‐dimensional network. The hydrogen bonding in (II) is far simpler, consisting of helical chains of N—H...O‐linked molecules that follow the 21 screw of the b axis. It is the presence of an elaborate hydrogen‐bonding system in the crystal structure of (I) that leads to the different torsion angle for the orientation of the two adjacent carbonyl groups from that in (II).  相似文献   

20.
Molecules of the title compounds N2‐(benzoyl­oxy)­benz­ami­dine, C14H12N2O2, (I), N2‐(2‐hydroxy­benzoyl­oxy)­benz­ami­dine, C14H12N2O3, (II), and N2‐benzoyloxy‐2‐hydroxybenzamidine, C14H12N2O3, (III), all have extended chain conformations, with the aryl groups remote from one another. In (I), the mol­ecules are linked into chains by a single N—H⋯N hydrogen bond [H⋯N = 2.15 Å, N⋯N = 3.029 (2) Å and N—H⋯N = 153°] and these chains are linked into sheets by means of aromatic π–π stacking interactions. There is one intramolecular O—H⋯O hydrogen bond in (II), and a combination of one three‐centre N—H⋯(N,O) hydrogen bond [H⋯N = 2.46 Å, H⋯O = 2.31 Å, N⋯N = 3.190 (2) Å, N⋯O = 3.146 (2) Å, N—H⋯N = 138° and N—H⋯O = 154°] and one two‐centre C—H⋯O hydrogen bond [H⋯O = 2.46 Å, C⋯O = 3.405 (2) Å and C—H⋯O = 173°] links the mol­ecules into sheets. In (III), an intramolecular O—H⋯N hydrogen bond and two N—H⋯O hydrogen bonds [H⋯O = 2.26 and 2.10 Å, N⋯O = 2.975 (2) and 2.954 (2) Å, and N—H⋯O = 138 and 163°] link the molecules into sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号