首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The title salt, (C5H5N4S)2[ZnCl4], consists of two 6‐thioxo‐1,6‐dihydro­purinium (6mpH2+) cations (A and B) and a tetra­chloro­zincate anion, which are held together by N—H⋯Cl and C—H⋯Cl inter­actions. There is an anion–π inter­action between one Cl atom of the [ZnCl4] anion and the pyrimidine ring of the 6mpH2+(B) cation. Inter­molecular π–π stacking inter­actions allow 6mpH2+(A) cations to form anti­parallel pairs. One inter­esting structural feature is the double N—H⋯N inter­molecular hydrogen bonds between two 6mpH2+(A) cations. This kind of inter­action, mimicking that of natural nucleobases, can be very valuable in designing new therapeutic purine derivatives.  相似文献   

2.
The mol­ecular structure of the title compound, [SnBr2(C9H12N)(C9H13N)][SnBr4(C9H12N)], consists of a dibromo­bis[2‐(dimethyl­aminomethyl)phenyl][2‐dimethylammoniomethyl)phenyl]tin(IV) cation and a tetra­bromo­[2‐(dimethyl­aminomethyl)phenyl]tin(IV) anion. As a result of strong intra­molecular N→Sn inter­actions, distorted trigonal–bipy­ramidal and octa­hedral coordination geometries are established for the metal centres of the diorganotin(IV) and monoorganotin(IV) fragments, respectively. The cation and anion are linked together by two Br⋯H contacts, while three additional similar contacts result in a dimeric fragment which repeats in a two‐dimensional supra­molecular arrangement.  相似文献   

3.
In 2′,5′‐dimethyl‐p‐terphenyl, C20H18, which displays pseudosymmetry (the true space group is Pna21, but less satisfactory refinement can also be achieved in Pbcn), the mol­ecules are linked into chains by two short C—H⋯π inter­actions to the centroid of the central ring. In 2′,5′‐bis­(bromo­meth­yl)‐p‐terphenyl, C20H16Br2, the polar CH2Br groups cause mol­ecules to aggregate via C—H⋯Br and Br⋯Br inter­actions, forming a layer structure, in which the phenyl rings project outwards from the central, more polar, region.  相似文献   

4.
The title compound, C15H11Cl2NO, was synthesized from N‐­benzyl­isatin. The compound crystallizes as stacks of mol­ecules running down the c axis. Mol­ecules within each of these stacks inter­act with each other through π–π and C—H⋯π inter­actions, and inter­act with neighbouring stacks through C—H⋯O inter­actions.  相似文献   

5.
The two components of the title heterodimer, C17H21NO2·C8H5NO2, are linked end‐to‐end via O—H⋯O(=C) and C—H⋯O(=C) hydrogen‐bond inter­actions. Additional lateral C—H⋯O inter­actions link the dimers in a side‐by‐side fashion to produce wide infinite mol­ecular ribbons. Adjacent ribbons are inter­connected viaπ–π stacking and C—H⋯π(arene) inter­actions. This structure represents the first evidence of robust hydrogen‐bond formation between the moieties of pyridin‐4(1H)‐one and benzoic acid.  相似文献   

6.
The title compound, C16H16N5+·Cl (nbbH+·Cl), displays N—H⋯N, N—H⋯Cl and π–π inter­actions in the crystal packing. The Cl anion is chelated by the nbbH+ cation via two N—H⋯Cl hydrogen bonds. Inter‐ion N—H⋯N and N—H⋯Cl hydrogen bonds link ions related by 21 screw axes into chains along the c axis. These chains are further linked by glide‐plane operations to generate a three‐dimensional network, which is additionally stabilized by inter­chain π–π inter­actions.  相似文献   

7.
The title Schiff base compound, C28H26N2O2, possesses both OH and NH tautomeric character in its mol­ecular structure. While the OH side of the compound is described as an inter­mediate state, its NH side adopts a predominantly zwitterionic form. The mol­ecular structure of the compound is stabilized by both N+—H⋯O and O—H⋯N intra­molecular hydrogen bonds. There are two weak C—H⋯O hydrogen bonds leading to polymeric chains of topology C(5) and C(13) running along the b axis of the unit cell. In addition, inter­molecular C—H⋯π inter­actions serve to stabilize the extended structure.  相似文献   

8.
In the title salt, 1,3‐bis­{[2‐(2‐pyridinio)eth­yl][2‐(2‐pyrid­yl)ethyl]amino}benzene diperchlorate dihydrate, C34H38N62+·2ClO4·2H2O, the cation contains two ethyl­pyrid­yl and two ethyl­pyridinium pendant pairs anchored to the two N atoms of 1,3‐phenyl­enediamine. The pyrid­yl and pyridinium N atoms are flanked by a mol­ecule of water through strong hydrogen‐bonding inter­actions [N—H⋯O = 2.762 (6) and 2.758 (6) Å, and O—H⋯N = 2.834 (6) and 2.839 (6) Å]. The water mol­ecules have weak hydrogen‐bonding inter­actions with the perchlorate anions as well. One of the perchlorate anions is severely disordered.  相似文献   

9.
Mol­ecules of 1‐acetyl‐3‐ferrocenyl‐5‐methyl‐1H‐pyrazole, [Fe(C5H5)(C11H11N2O)], form a centrosymmetric dimer generated by a combination of one C—H⋯π(pyrazole) and one C—H⋯π(cyclo­penta­dienyl) inter­action. The dimers are linked by C—H⋯π inter­actions, involving the pyrazole rings as acceptors, into layers parallel to (10). Mol­ecules of 1‐acetyl‐5‐ferrocenyl‐3‐(2‐pyrid­yl)‐1H‐pyrazole, [Fe(C5H5)(C15H12N3O)], are linked by C—H⋯O inter­actions into a chain running in the [010] direction. Two chains of this type passing through each unit cell are connected by O⋯π(pyridyl) inter­actions into an [010] double chain.  相似文献   

10.
The mol­ecules of 2‐benzoyl‐1‐benzofuran, C15H10O2, (I), inter­act through double C—H⋯O hydrogen bonds, forming dimers that are further linked by C—H⋯O, C—H⋯π and π–π inter­actions, resulting in a three‐dimensional supramolecular network. The dihedral angle between the benzo­yl and benzofuran fragments in (I) is 46.15 (3)°. The mol­ecules of bis­(5‐bromo‐1‐benzofuran‐2‐yl) ketone, C17H8Br2O3, (II), exhibit C2 symmetry, with the carbon­yl group (C=O) lying along the twofold rotation axis, and are linked by a combination of C—H⋯O and C—H⋯π inter­actions and Br⋯Br contacts to form sheets. The stability of the mol­ecular packing in 3‐mesit­yl‐3‐methyl­cyclo­but­yl 3‐methyl­naphtho[1,2‐b]furan‐2‐yl ketone, C28H28O2, (III), arises from C—H⋯π and π–π stacking inter­actions. The fused naphthofuran moiety in (III) is essentially planar and makes a dihedral angle of 81.61 (3)° with the mean plane of the trimethyl­benzene ring.  相似文献   

11.
Crystallization of the title compound, di‐μ‐pyridazine‐1κ2N:2κ2N′‐bis­[(2,3‐dihydro‐3‐oxobenzisosulfonazolato‐κN)silver(I)], [Ag2(C7H4NO3S)2(C4H4N2)2], from acetonitrile yields both monoclinic, (I), and triclinic, (II), polymorphs. In both forms, the silver(I) ions have a slightly distorted trigonal AgN3 coordination geometry and are doubly bridged by two neutral pyridazine (pydz) ligands, generating a centrosymmetric dimeric structure. The saccharinate (sac) ligands are N‐coordinated. The dihedral angles between the sac and pydz rings are 8.43 (7) and 7.94 (8)° in (I) and (II), respectively, suggesting that the dimeric mol­ecule is nearly flat. The bond geometry is similar in both polymorphs. In (I), the dimers inter­act with each other via aromatic πsac–πpydz stacking inter­actions, forming two‐dimensional layers, which are further crosslinked by weak C—H⋯O inter­actions. Compound (II) exhibits similar C—H⋯O and π–π inter­actions, but additional C—H⋯π and π⋯Ag inter­actions help to stabilize the packing of the dimers.  相似文献   

12.
The title complex, [Cu(C11H14BrN2O)(N3)]n, is an inter­esting azide‐bridged polynuclear copper(II) compound. The CuII atom is five‐coordinated in a square‐pyramidal configuration, with one O and two N atoms of one Schiff base and one terminal N atom of a bridging azide ligand defining the basal plane, and another terminal N atom of another bridging azide ligand occupying the axial position. The {4‐bromo‐2‐[2‐(dimethyl­amino)ethyl­imino­meth­yl]phenolato}copper(II) moieties are linked by the bridging azide ligands, forming polymeric chains running along the b axis. Adjacent chains are further linked by weak Br⋯Br inter­actions into a sheet.  相似文献   

13.
In the title compound, C28H30BrN3O4, the mol­ecules are linked by C—H⋯Br and N—H⋯O hydrogen bonds into one‐dimensional chains, which are arranged into a three‐dimensional network through a combination of C—H⋯O hydrogen bonds and two kinds of π–π inter­actions between the benzene rings of the anthraquinone units.  相似文献   

14.
In the title compound, [CuCl2(C9H12N2O)], the CuII atom is coordinated by two Cl anions and two N atoms of one O‐ethyl 3‐methyl­pyridine‐2‐carboximidic acid mol­ecule in a slightly distorted square‐planar geometry, with Cu—N distances of 2.0483 (17) and 1.9404 (18) Å, and Cu—Cl distances of 2.2805 (10) and 2.2275 (14) Å. In addition, each CuII atom is connected by one Cl anion and the CuII atom from a neighbouring mol­ecule, with Cu⋯Cl and Cu⋯Cu distances of 2.9098 (13) and 3.4022 (12) Å, respectively, and, therefore, a centrosymmetric dimer is formed. Adjacent mol­ecular dimers are connected by π–π stacking inter­actions between pyridine rings to form a zigzag mol­ecular chain. The mol­ecular chains are also enforced by N—H⋯Cl and C—H⋯Cl inter­actions.  相似文献   

15.
The crystal structures of the title compounds, viz. C24H14F2N2O2, (I), and C25H17FN2O2, (II), respectively, have been determined in order to unravel the role of an ordered F atom in generating stable supra­molecular assemblies. On changing the substitution from fluorine to a methyl group, C—H⋯F inter­actions are replaced by C—H⋯π inter­actions, revealing the importance of such weak inter­actions when present alongside N—H⋯O and C—H⋯O hydrogen bonds. The dihedral angle between the planes of the 4‐fluoro­phenyl ring and the pyridine ring is 26.8 (1)° in (I), while that between the planes of the 4‐methyl­phenyl and pyridine rings is 29.5 (1)° in (II).  相似文献   

16.
The title compounds, C12H20N6O2, (I), and C5H9N3O2, (II), display the characteristic features of 1,2,4‐triazole derivatives. Compound (I) lies about an inversion centre which is at the mid‐point of the central C—C bond. Compound (II) also contains a planar 1,2,4‐triazole ring but differs from (I) in that it has a hydr­oxy group attached to the ring. Mol­ecules of (I) are held together in the crystal structure by inter­molecular N—H⋯O contacts and by weak π–π stacking inter­actions between the 1,2,4‐triazole moieties. Compound (II) contains inter­molecular O—H⋯O and N—H⋯O hydrogen bonds.  相似文献   

17.
The title compound, C14H9N5S, has been synthesized and characterized both spectroscopically and structurally. The triazolo–thia­diazole system, the pyridine ring and the phenyl ring are all planar. The plane of the triazolo–thia­diazole system forms dihedral angles of 1.53 (13) and 7.55 (12)° with the planes of the pyridine and phenyl rings, respectively. In the mol­ecule, there are two intra­molecular inter­actions of types C—H⋯N and C—H⋯S. Inter­molecular C—H⋯N inter­actions involving a phenyl CH group and a triazole N atom lead to the formation of a one‐dimensional chain. In the crystal structure, two types of π–π inter­actions affect the packing of the mol­ecules. In addition, there are inter­molecular non‐bonded S⋯N contacts of 2.870 (2) Å, which may cause steric hindrance.  相似文献   

18.
The title compounds, (E)‐2‐[(2‐bromo­phenyl)imino­methyl]‐4‐methoxy­phenol, C14H12BrNO2, (I), (E)‐2‐[(3‐bromo­phenyl)­imino­methyl]‐4‐methoxy­phenol, C14H12BrNO2, (II), and (E)‐2‐[(4‐bromo­phenyl)imino­methyl]‐4‐methoxy­phenol, C14H12BrNO2, (III), adopt the phenol–imine tautomeric form. In all three structures, there are strong intra­molecular O—H⋯N hydrogen bonds. Compound (I) has strong inter­molecular hydrogen bonds, while compound (III) has weak inter­molecular hydrogen bonds. In addition to these inter­molecular inter­actions, C—H⋯π inter­actions in (I) and (III), and π–π inter­actions in (I), play roles in the crystal packing. The dihedral angles between the aromatic rings are 15.34 (12), 6.1 (3) and 39.2 (14)° for (I), (II) and (III), respectively.  相似文献   

19.
In the title compound, [Ni(C15H8O7S)(H2O)4]·C3H7NO·H2O, the NiII cation is chelated by a 7‐hydroxy‐5‐oxidoflavone‐6‐sulfonate ligand through one oxide and one carbonyl O atom, and the sixfold coordination is completed by four aqua ligands. Individual mol­ecules are linked into hydrogen‐bonded dimers by way of five pairs of O—H⋯O hydrogen bonds. These dimers, in turn, determine a three‐dimensional supra­molecular arrangement through a variety of inter­dimeric inter­actions, such as O—H⋯O, C—H⋯O and π–π stacking.  相似文献   

20.
In 3,4‐di‐2‐pyridyl‐1,2,5‐oxadiazole (dpo), C12H8N4O, each mol­ecule resides on a twofold axis and inter­acts with eight neighbours via four C—H⋯N and four C—H⋯O inter­actions to generate a three‐dimensional hydrogen‐bonded architecture. In the perchlorate analogue, 2‐[3‐(2‐pyrid­yl)‐1,2,5‐oxadiazol‐4‐yl]pyridinium perchlorate, C12H9N4O+·ClO4 or [Hdpo]ClO4, the [Hdpo]+ cation is bisected by a crystallographic mirror plane, and the additional H atom in the cation is shared by the two pyridyl N atoms to form a symmetrical intra­molecular N⋯H⋯N hydrogen bond. The cations and perchlorate anions are linked through C—H⋯O hydrogen bonds and π–π stacking inter­actions to form one‐dimensional tubes along the b‐axis direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号