首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title compound, octa­calcium copper penta­germanium octa­deca­oxide, represents a new inter­mediate phase between CaO and GeO2, and has not previously been reported in the literature. The structure consists of three different Ge sites, two of them on general 8d positions, site symmetry 1, one on special position 4d, site symmetry 2. Three of the five Ca sites occur on 8d positions, site symmtery 1, one Ca is on 4b with site symmetry and one Ca is on 4c with site symmetry 2. All nine O atoms have symmetry 1 (8d position). By sharing common edges, the Ca sites form infinite bands parallel to the c axis, and these bands are inter­connected by isolated GeO4 and Ge3O10 units. These (100) layers are stacked along a in an ABAB… sequence, with the B layer being inverted and displaced along b/2.  相似文献   

2.
The structure of lithium barium silicate, Li2BaSiO4, has been determined from synchrotron radiation powder data. The title compound was synthesized by high‐temperature solid‐state reaction and crystallizes in the hexagonal space group P63cm. It contains two Li atoms, one Ba atom (both site symmetry ..m on special position 6c), two Si atoms [on special positions 4b (site symmetry 3..) and 2a (site symmetry 3.m)] and four O atoms (one on general position 12d, and three on special positions 6c, 4b and 2a). The basic units of the structure are (Li6SiO13)5− units, each comprising seven tetrahedra sharing edges and vertices. These basic units are connected by sharing corners parallel to [001] and through sharing (SiO4)4− tetrahedra in (001). The relationship between the structures and luminescence properties of Li2SrSiO4, Li2CaSiO4 and the title compound is discussed.  相似文献   

3.
The title compound, {(C7H15N2Cl)2[Cd3Cl10]·4H2O}n, consists of 1‐chloromethyl‐1,4‐diazoniabicyclo[2.2.2]octane dications, one‐dimensional inorganic chains of {[Cd3Cl10]4−} anions and uncoordinated water molecules. Each of the two independent CdII ions, one with site symmetry 2/m and the other with site symmetry m, is octahedrally coordinated by chloride ions (two with site symmetry m and one with site symmetry 2), giving rise to novel polymeric zigzag chains of corner‐sharing Cd‐centred octahedra parallel to the c axis. The organic cations, bisected by mirror planes that contain the two N atoms, three methylene C atoms and the Cl atom, are ordered. Hydrogen bonds (O—H...Cl and O—H...O) between the water molecules (both with O atoms in a mirror plane) and the chloride anions of neighbouring chloridocadmate chains form a three‐dimensional supramolecular network.  相似文献   

4.
The previously unknown crystal structure of strontium magnesium phosphate, Sr2+xMg3−xP4O15 (x∼ 0.36), determined and refined from laboratory powder X‐ray diffraction data, represents a new structure type. The title compound was synthesized by high‐temperature solid‐state reaction and it crystallizes in the orthorhombic space group Cmcm. It was earlier thought to be stoichiometric Sr2Mg3P4O15, but our structural study indicates the nonstoichiometric composition. The asymmetric unit contains one Sr (site symmetry ..m on special position 8g), one M (= Mg 64%/Sr 36%; site symmetry 2/m.. on special position 4b), one Mg (site symmetry 2.. on special position 8e), two P (site symmetry m.. on special position 8f and site symmetry ..m on special position 8g), and six O sites [two on general positions 16h, two on 8g, one on 8f and one on special position 4c (site symmetry m2m)]. The nonstoichiometry is due to the mixing of magnesium and strontium ions on the M site. The structure consists of three‐dimensional networks of MgO4 and PO4 tetrahedra, and MO6 octahedra with the other strontium ions occupying the larger cavities surrounded by ten O atoms. All the polyhedra are connected by corner‐sharing except the edge‐sharing MO6 octahedra forming one‐dimensional arrangements along [001].  相似文献   

5.
The structure of dicalcium heptagermanate, previously described with an orthorhombic space group, has been redetermined in the tetragonal space group . It contains three Ge positions (site symmetry 1, ..2 and 2.22, respectively), one Ca position (..2) and four O atoms, all on general 8i positions (site symmetry 1). A sheet of four‐membered rings of Ge tetrahedra (with Ge on the 8i position) and isolated Ge tetrahedra (Ge on the 4g position) alternate with a sheet of Ge octahedra (Ge on the 2d position) and eightfold‐coordinated Ca sites along the c direction in an ABABA… sequence. The three‐dimensional framework of Ge sites displays a channel‐like structure, evident in a projection on to the ab plane.  相似文献   

6.
The structure analyses of sodium chromium digermanate, NaCrGe2O6, (I), and lithium chromium digermanate, LiCrGe2O6, (II), provide important structural information for the clinopyroxene family, and form part of our ongoing studies on the phase transitions and magnetic properties of clinopyroxenes. (I) shows C2/c symmetry at 298 K, contains one Na, one Cr (both site symmetry 2 on special position 4e), one Ge and three O‐atom positions (on general positions 8f) and displays the well known clinopyroxene topology. The basic units of the structure of (I) are infinite zigzag chains of edge‐sharing Cr3+O6 octahedra (M1 site), infinite chains of corner‐sharing GeO4 tetrahedra, connected to the M1 chains by common corners, and Na sites occupying interstitial space. (II) was found to have P21/c symmetry at 298 K. The structure contains one Na, one Cr, two distinct Ge and six O‐atom positions, all on general positions 4e. The general topology of the structure of (II) is similar to that of (I); however, the loss of the twofold symmetry makes it possible for two distinct tetrahedral chains, having different conformation states, to exist. While sodium is (6+2)‐fold coordinated, lithium displays a pure sixfold coordination. Structural details are given and chemical comparison is made between silicate and germanate chromium‐based clinopyroxenes.  相似文献   

7.
Disodium hexamanganese(II,III) germanate is the first aenigmatite‐type compound with significant amounts of manganese. Na2(Mn5.26Na0.74)Ge6O20 is triclinic and contains two different Na positions, six Ge positions and 20 O positions (all with site symmetry 1 on general position 2i of space group P). Five out of the seven M positions are also on general position 2i, while the remaining two have site symmetry (Wyckoff positions 1f and 1c). The structure can be described in terms of two different layers, A and B, stacked along the [011] direction. Layer A contains pyroxene‐like chains and isolated octahedra, while layer B is built up by slabs of edge‐sharing octahedra connected to one another by bands of Na polyhedra. The GeO4 tetrahedra show slight polyhedral distortion and are among the most regular found so far in germanate compounds. The M sites of layer A are occupied by highly charged (trivalent) cations, while in layer B a central pyroxene‐like zigzag chain can be identified, which contains divalent (or low‐charged) cations. This applies to the aenigmatite‐type compounds in general and to the title compound in particular.  相似文献   

8.
The previously unknown crystal structure of magnesium perchlorate anhydrate, determined and refined from laboratory X‐ray powder diffraction data, represents a new structure type. The title compound was obtained by heating magnesium perchlorate hexahydrate at 523 K for 2 h under vacuum and it crystallizes in the monoclinic space group P21/c. The asymmetric unit contains one Mg (site symmetry on special position 2a), one Cl and four O sites (on general positions 4e). The structure consists of a three‐dimensional network resulting from the corner‐sharing of MgO6 octahedra and ClO4 tetrahedra. Each MgO6 octahedron share corners with six ClO4 tetrahedra. Each ClO4 tetrahedron shares corners with three MgO6 octahedra, with one O‐atom corner dangling. The ClO4 tetrahedra are oriented in such a way that one‐dimensional channels parallel to [100] are formed between the dangling O atoms.  相似文献   

9.
The Transition from Isolated Dimeric [AlF4/1F2/2]2 Groups of Edge‐sharing Octahedra to Infinitive Linear Chains [AlF4/1F2/2] of Corner‐sharing Octahedra within the Tetragonal Compounds (Sr, M)AlF5 (M = Ca, Ba) — the Influence of the Different Substituition Rate of Sr by Ba and Ca The solid solutions Sr0.87(1)Ba0.13(1)AlF5, Sr0.75(1)Ba0.25(1)AlF5, Sr0.24(1)Ba0.76(1)AlF5 and Ca0.13(3)Sr0.56(6)Ba0.31(3)AlF5 have been prepared by solid state reactions from the binary fluorides. The crystal structures have been determined by means of single crystal diffraction data. All compounds crystallize tetragonal body‐centered in different structure types which are composed of two main structural building blocks. The first building block is common to all solid solutions and consists of linear chains of trans corner‐sharing [AlF6] octahedra propagating along the c axis. Two opposite equatorial fluorine atoms of this chain have been replaced by other [AlF6] octahedra thus forming branching chains which give rise to a tunnel arrangement. The alkaline earth metal atoms are located inside the tunnels and those structural motifs extend parallel the tunnel axis which lead to the formation of the different structure types. By increasing the Ba content of the solid solutions a transition from isolated dimeric groups [AlF4/1F2/2]2 of edge‐sharing octahedra, and by additional incorporation of Ca from disordered zigzag chains, to linear infinitive [AlF4/1F2/2] chains of corner‐sharing octahedra has been established.  相似文献   

10.
The Crystal Structure of SCl3[Re2Cl9] and its Relation to the RuBr3 Type SCl3[Re2Cl9] was obtained from the reaction of rhenium and SCl2 at 400 °C. The X‐ray crystal structure determination revealed a monoclinic structure, a = 834.1 pm, b = 1053.3 pm, c = 866.1 pm, β = 91.90°, space group P21/m, R1 = 0.058. The SCl3+ and Re2Cl9 ions have the known structures; the ReRe bond length in the face‐sharing bioctahedron is 272.2 pm. The crystal packing can be derived from the RuBr3 structure type, which has infinite columns of face‐sharing octahedra; one quarter of the metal atoms are removed and another quarter are replaced by sulfur atoms. The chlorine atoms form a slightly distorted hexagonal closest‐packing. The symmetry relationships are shown in a family tree of group–subgroup relations.  相似文献   

11.
This study presents the first structural report of natural isokite (calcium magnesium phosphate fluoride), with the formula CaMg(PO4)F0.8(OH)0.2 (i.e. some substitution of OH for F), based on single‐crystal X‐ray diffraction data. Isokite belongs to the C2/c titanite mineral group, in which Mg is on an inversion centre and the Ca, P and F/OH atoms are on twofold axes. The structure is composed of kinked chains of corner‐sharing MgO4F2 octahedra that are crosslinked by isolated PO4 tetrahedra, forming a three‐dimensional polyhedral network. The Ca2+ cations occupy the interstitial sites coordinated by six O atoms and one F anion.  相似文献   

12.
The tribarium dilithium divanadate tetrachloride Ba3Li2V2O7Cl4 is a new vanadate with a channel structure and the first known vanadate containing both Ba and Li atoms. The structure contains four non‐equivalent Ba2+ sites (two with m and two with 2/m site symmetry), two Li+ sites, two nonmagnetic V5+ sites, five O2− sites (three with m site symmetry) and four Cl sites (m site symmetry). One type of Li atom lies in LiO4 tetrahedra (m site symmetry) and shares corners with VO4 tetrahedra to form eight‐tetrahedron Li3V5O24 rings and six‐tetrahedron Li2V4O18 rings; these rings are linked within porous layers parallel to the ab plane and contain Ba2+ and Cl ions. The other Li atoms are located on inversion centres and form isolated chains of face‐sharing LiCl6 octahedra.  相似文献   

13.
The boron‐centered mixed‐halide zirconium cluster phases were obtained from reactions of appropriate amounts of NaCl or ACl2 (with A = Ca, Sr, Ba), ZrCl4, ZrI4, Zr (powder), and elemental B in sealed tantalum containers at 800–850 °C. Single crystals of NaZr6Cl10.94(1)I3.06B and Sr0.5Zr6Cl11.34(2)I2.66B have been characterized by X‐ray diffraction at room temperature (cubic, Pa 3, Z = 4, a = 1331.3(1) pm, and a = 1326.2(2) pm, respectively). The Zr6 octahedra in these phases are centered by boron and three‐dimensionally connected by exo‐iodide atoms which bridge simultaneously three octahedra. Six out of the twelve inner chlorides (one symmetry independent site) which bridge the edges of each octahedron, but are not involved in inter‐cluster bridging (according to AZr6Ia–a–a6/2(Cl12–xIx)iB), can be completely substituted by iodide. Such a substitution is not possible for the remaining six inner halides on the second symmetry independent site, because the larger iodide atom on this site would experience strong repulsive forces from short anionic contacts. This gives the phase width of NaZr6Cl12–xI2+xB to x È 6. The size of the voids that cover the cations A limits this structure to members with A = Na, Ca, Sr, and Ba. This structure type requires the existence of two differently sized halide types simultaneously.  相似文献   

14.
Ba3Cu2Al2F16 is monoclinic: a = 7.334(1)Å, b = 5.320(2)Å, c = 16.022(1)Å, β = 96.34(1)°, Z = 2. Its crystal structure was solved in the space group P21 (No. 4) from synchrotron X‐ray single crystal data using 2685 unique reflections (2639 with Fo/σ(Fo) > 4). The final R factor is 0.044. The structure consists of a succession along the c‐axis of the cell of three layers of two different kinds of sheets developing in the (a, b) plane. The first one, formulated [(AlF5)2]4— and hereafter named A, is built up from infinite cis‐chains of aluminium‐fluorine octahedra [AlF6], linked by two vertices and distanced by a. The second one, formulated [Cu2AlF11]4— and named B, is bidimensional. It is constituted of distorted copper‐fluorine octahedra [CuF6], linked by edges, which form infinite chains interconnected by three vertices of isolated [AlF6] octahedra. The stacking sequence of the sheets is (A, B, B). The barium ions, 12‐coordinated, are inserted between the sheets. The crystal structure of Ba3Cu2Al2F16 is closely related to that of Ba4Cu2Al3F21. Only the proportion and the stacking sequence of the two kinds of sheets in the c‐direction differ, according to two different compositions and two different symmetries.  相似文献   

15.
The title compound, with nominal formula Cu2ScZr(PO4)3, has a beige coloration and displays fast Cu+ cation conduction at elevated temperatures. It adopts a NASICON‐type structure in the space group Rc. The examined crystal was an obverse–reverse twin with approximately equal twin components. The [ScIIIZrIV(PO4)3]2− framework is composed of corner‐sharing Sc/ZrO6 octahedra and PO4 tetrahedra. The Sc and Zr atoms are disordered on one atomic site on a crystallographic threefold axis. The P atom of the phosphate group lies on a crystallographic twofold axis. Nonframework Cu+ cations occupy three positions. Two of the Cu+ positions generate an approximately circular distribution around a site of symmetry, referred to as the M1 site in the NASICON‐type structure. The other Cu+ position is situated close to the twofold symmetric M2 site, displaced into a position with a distorted square‐based pyramidal coordination geometry. The structure has been determined at 100, 200 and 300 K. Changes in the refined site‐occupancy factors of the Cu+ positions suggest increased mobility of Cu+ around the circular orbit close to the M1 site at room temperature, but no movement into or out of the M2 site. Free refinement of the Cu site‐occupancy factors suggests that the formula of the crystal is Cu1.92(1)ScZr(PO4)3, which is consistent with the low‐level presence of Cu2+ exclusively in the M2 site.  相似文献   

16.
The first selenite chloride hydrates, Co(HSeO3)Cl · 3 H2O and Cu(HSeO3)Cl · 2 H2O, have been prepared from solution and characterised by single‐crystal X‐ray diffraction. The cobalt phase adopts an unusual “one‐dimensional” structure built up from vertex‐sharing pyramidal [HSeO3]2–, and octahedral [CoO2(H2O)4]2– and [CoO2(H2O)2Cl2]4– units. Inter‐chain bonding is by way of hydrogen bonds or van der Waals' interactions. The atomic arrangement of the copper phase involves [HSeO3]2– pyramids and Jahn‐Teller distorted [CuCl2(H2O)4] and [CuO4Cl2]8– octahedra, sharing vertices by way of Cu–O–Se and Cu–Cl–Cu bonds. Crystal data: Co(HSeO3)Cl · 3 H2O, Mr = 276.40, triclinic, space group P 1 (No. 2), a = 7.1657(5) Å, b = 7.3714(5) Å, c = 7.7064(5) Å, α = 64.934(1)°, β = 68.894(1)°, γ = 71.795(1)°, V = 337.78(7) Å3, Z = 2, R(F) = 0.036, wR(F) = 0.049. Cu(HSeO3)Cl · 2 H2O, Mr = 263.00, orthorhombic, space group Pnma (No. 62), a = 9.1488(3) Å, b = 17.8351(7) Å, c = 7.2293(3) Å, V = 1179.6(2) Å3, Z = 8, R(F) = 0.021, wR(F) = 0.024.  相似文献   

17.
New investigations on the di‐ and trihalides of titanium, TiX2 and TiX3 (X = Cl, Br, I), with their 3d2 and 3d1 electronic configurations, confirm the early observations and conclusions of Klemm. At sufficiently low temperatures, Ti–Ti single bonds are formed in the one‐dimensional trihalides, i.e., Ti–Ti dimers are observed. Equally, in the two‐dimensional dihalides, {Ti3} triangles occur with three single bonds. Phase transitions were detected from single‐crystal or powder X‐ray diffraction data, from magnetic measurements and thermal analysis. Except for the binary halides a number of ternary halides ATiX3 (extended chains of facesharing octahedra), K4Ti3Br12 (triples of face‐sharing octahedra), Na2Ti3Cl8 (triangular trimers), A3Ti2X9 (dimers of face‐sharing octahedra), and A3TiX6 (isolated octahedra) as well as the mixed‐valent halides CsTi2I7 (tetrahedra and octahedra) and Na5Ti3Cl12 (chains of octahedra) have been observed. Except for the triangles in titanium(II) halides, cluster compounds are rare but include K4[{OTi4}I12] and {CTi6}Cl14.  相似文献   

18.
Single crystals of nickel(II) divanadium(V) ditellurium(IV) decaoxide, NiV2Te2O10, were synthesized via a transport reaction in sealed evacuated silica tubes. The compound crystallizes in the triclinic system (space group P). The Ni atoms are positioned in the 1c position on the inversion centre, while the V and Te atoms are in general positions 2i. The crystal structure is layered, the building units within a (010) layer being distorted VO6 octahedra and NiO6 octahedra. The metal–oxide layers are connected by distorted TeO4E square pyramids (E being the 5s2 lone electron pair of TeIV) to form the framework. The structure contains corner‐sharing NiO6 octahedra, corner‐ and edge‐sharing TeO4E square pyramids, and corner‐ and edge‐sharing VO6 octahedra. NiV2Te2O10 is the first oxide containing all of the cations NiII, VV and TeIV.  相似文献   

19.
Single crystals of Hg2TeO5 were obtained as dark‐red parallelepipeds by reacting stoichiometric amounts of Hg(NO3)2 · H2O and H6TeO6 under hydrothermal conditions (250 °C, 10d). The crystal structure (space group Pna21, Z = 4, a = 7.3462(16), b = 5.8635(12), c = 9.969(2)Å, 1261 structure factors, 50 parameters, R[F2 > 2σ(F2)] = 0.0295) is characterized by corner‐sharing [TeO6] octahedra forming isolated chains [TeO4/1O2/2] which extend parallel to [100]. The two crystallographically independent Hg atoms are located in‐between the chains and interconnect the chains via common oxygen atoms. Amber coloured single crystals of Hg3TeO6 were prepared by heating a mixture of Hg, HgO and TeO3 together with small amounts of HgCl2 as mineralizer in an evacuated and sealed silica glass tube (520 °C). The previously reported crystal structure has been re‐investigated by means of single crystal X‐ray data which reveal a symmetry reduction from Iad to Ia3¯ (Z = 16, a = 13.3808(6) Å, 609 structure factors, 33 parameters, R[F2 > 2σ(F2)] = 0.0221). The crystal structure is made up of a body‐centred packing of [TeO6] octahedra with the Hg atoms situated in the interstices of this arrangement. Upon heating, both title compounds decompose in a one‐step mechanism under formation of TeO2 and loss of the appropriate amounts of elementary mercury and oxygen.  相似文献   

20.
Six polynuclear chlorobismuthates are formed in the reaction between BiCl3 and Ph4PCl by variation of the molar ratio of the educts, the solvents and the crystallisation methods: [Ph4P]3[Bi2Cl9] · 2 CH2Cl2, [Ph4P]3[Bi2Cl9] · CH3COCH3, [Ph4P]2[Bi2Cl8] · 2 CH3COCH3, [Ph4P]4[Bi4Cl16] · 3 CH3CN, [Ph4P]4[Bi6Cl22], and [Ph4P]4[Bi8Cl28]. We report the crystal structure of [Ph4P]3[Bi2Cl9] · 2 CH2Cl2 which crystallises with triclinic symmetry in the S. G. P1 No. 2, with the lattice parameters a = 13.080(3) Å, b = 14.369(3) Å, c = 21.397(4) Å, α = 96.83(1)°, β = 95.96(1)°, γ = 95.94(2)°, V = 3943.9(1) Å3, Z = 2. The anion is formed from two face‐sharing BiCl6‐octahedra. [Ph4P]2[Bi2Cl8] · 2 CH3COCH3 crystallises with monoclinic symmetry in the S. G. P21/n, No. 14, with the lattice parameters a = 14.045(5) Å, b = 12.921(4) Å, c = 17.098(3) Å, β = 111.10(2)°, V = 2894.8(2) Å3, Z = 2. The anion is a bi‐octahedron of two square‐pyramids, joined by a common edge. The octahedral coordination is achieved with two acetone ligands. [Ph4P]4[Bi4Cl16] · 3 CH3CN crystallises in the triclinic S. G., P1, No. 2, with the lattice parameters a = 14.245(9) Å, b = 17.318(6) Å, c = 24.475(8) Å, α = 104.66(3)°, β = 95.93(3)°, γ = 106.90(4)°, V = 5486(4) Å3, Z = 2. Two Bi2Cl8 dimers in syn‐position form the cubic anion. Lattice parameters of [Ph4P]3[Bi2Cl9] · CH3COCH3 are also given. The solvated compounds are desolvated at approximately 100 °C. [Ph4P]3[Bi2Cl9] · 2 CH2Cl2 and [Ph4P]3[Bi2Cl9] · CH3COCH3 show the same sequence of phase transitions after desolvation. All compounds melt into a liquid in which some order is observed and transform on cooling into the glassy state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号