首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid, selective and sensitive method for quantification of latanoprost free acid in rabbit aqueous humor (AH) and ciliary body (CB) using reverse phase-high performance liquid chromatography coupled with electrospray ionization (ESI)-mass spectrometry/mass spectrometry has been developed and validated. Quantification in AH and CB was achieved by stable isotope dilution employing tetra-deuterated analog of latanoprost free acid, used as internal standard. Sample preparation was based on protein precipitation with methanol in AH, and on liquid extraction with a mixture of ethyl acetate and isopropanol 60:40 (v/v) in CB. Elution was achieved on an octylsilica (C8) column, using an isocratic elution method. Detection was performed on a triple quadrupole mass spectrometer, using ESI in positive ion selected reaction monitoring mode. Calibration curves were linear in the validated concentration ranges of 10-160 ng/mL in AH and 80-1280 ng/g in CB. The accuracy and precision values, obtained from three different sets of quality control samples, each analyzed in triplicate on three different days, were within the generally accepted criteria for analytical methods (< 15%). The limit of detection was 30.66 pg/mL in AH and 237.75 pg/g in CB. The assay proved to be accurate and precise when applied to the in vivo study of latanoprost free acid in rabbit AH and CB after single administration of an eye drops containing latanoprost.  相似文献   

2.
The aim of the present paper was to examine the irradiation effect of two doses of UVA rays (365 nm) on the rabbit cornea and lens. Corneas of anesthetized adult albino rabbits were irradiated with UVA rays for 5 days (daily dose 1.01 J cm−2 in one group of rabbits and daily dose 2.02 J cm−2 in the second group of animals). The third day after the last irradiation, the rabbits were killed, and their eyes were employed for spectrophotometrical, biochemical and immunohistochemical investigations. Normal eyes served as controls. Absorption spectra of the whole corneal centers were recorded over the UV–VIS (visible) spectral range. Levels of antioxidant and prooxidant enzymes, nitric oxide synthases and nitric oxide (indirectly measured as nitrate concentration) were investigated in the cornea. Malondialdehyde, a byproduct of lipid peroxidation, was examined in the cornea and lens. The results show that the staining for endothelial nitric oxide synthase was more pronounced in corneas irradiated with the higher UVA dose. Otherwise, UVA rays at either dose did not significantly change corneal light absorption properties and did not cause statistically significant metabolic changes in the cornea or lens. In conclusion, UVA rays at the employed doses did not evoke harmful effects in the cornea or lens.  相似文献   

3.
The mammalian eye consists of several layers of pigmented tissues that contain melanin. The eye is a unique organ for pigment cell research because one can isolate and compare melanosomes from different tissues and embryonic origins. Retinal, iris and ciliary pigment epithelial cells are derived from the neural ectoderm, more specifically from the extremity of the embryonic optical cup, which is also the origin of the retina. In contrast, the pigment-generating cells in the choroid and in the stroma of the iris and ciliary body, uveal melanocytes, are developed from the neural crest, the same origin as the melanocytes in skin and hair. This review examines the potential functions of ocular melanin in the human eye. Following a discussion of the role of melanins in the pigment epithelium and uveal melanocytes, three specific topics are explored in detail-photo-screening protective effects, biophysical and biochemical protective effects, and the biologic and photobiologic effects of the two main classes of melanins (generally found as mixtures in ocular melanosomes)--eumelanin and pheomelanin.  相似文献   

4.
The present study investigates whether low-level helium-neon laser therapy can increase histological parameters of immobilized articular cartilage in rabbits or not. Twenty five rabbits were divided into three groups: the experiment group, which received low-level helium-neon laser therapy with 13J/cm(2) three times a week after immobilization of their right knees; the control group which did not receive laser therapy after immobilization of their knees; and the normal group which received neither immobilization nor laser therapy. Histological and electron microscopic examinations were performed at 4 and 7 weeks after immobilization. Depth of the chondrocyte filopodia in four-week immobilized experiment group, and depth of articular cartilage in seven-week immobilized experiment group were significantly higher than those of relevant control groups (exact Fisher test, p=0.001; student's t-test, p=0.031, respectively). The surfaces of articular cartilages of the experiment group were relatively smooth, while those of the control group were unsmooth. It is therefore concluded that low-level helium-neon laser therapy had significantly increased the depth of the chondrocyte filopodia in four-week immobilized femoral articular cartilage and the depth of articular cartilage in seven-week immobilized knee in comparison with control immobilized articular cartilage.  相似文献   

5.
ObjectiveThe purpose of this study was to investigate the effects of laser phototherapy as preventive and therapeutic regime on induced-oral mucositis in hamsters.DesignThe animals were divided into four groups: preventive cryotherapy, preventive laser, therapeutic laser and therapeutic control group. Mucositis was induced in hamsters by intraperitoneal injection of 5-fluorouracil (5-FU) and superficial scratching. All preventive treatment was performed on the right cheek pouch mucosa. The left pouch mucosa was used for a spontaneous development of mucositis and did not receive any preventive therapy. Laser parameters were: λ = 660 nm, P = 30 mW, D = 1.2 J/cm2, Δt = 40 s, spot size 3 mm2, I = 1 W/cm2. Cryotherapy was done positioning ice packs in the hamster mucosa 5 min before 5-FU infusion and 10 min afterward. To study the healing of mucositis, the left pouch mucosa of each of the hamsters in the TLG received laser irradiation on the injured area. Irradiation parameters were kept the same as abovementioned. The control hamsters in the TCG did not receive any treatment. The mucositis degree and the animal’s body mass were evaluated. An assessment of blood vessels was made based on immunohistochemical staining.ResultsThe CG animals lost 15.16% of theirs initial body mass while the LG animals lost 8.97% during the first 5 days. The laser treated animals had a better clinical outcome with a faster healing, and more granulation tissue. The quantity of blood vessels at both LG and CG were higher than in healthy mucosa. Regarding the therapeutic analysis, the severity of the mucositis in the TLG was always lower than TCG. TLG presented higher organization of the granulation tissue, parallel collagen fibrils, and increased angiogenesis.ConclusionThe results suggest that laser phototherapy had a positive effect in reducing mucositis severity, and a more pronounced effect in treating established mucositis.  相似文献   

6.
Cordyceps cicadae (CC), an entomogenous fungus that has been reported to have therapeutic glaucoma, is a major cause of blindness worldwide and is characterized by progressive retinal ganglion cell (RGC) death, mostly due to elevated intraocular pressure (IOP). Here, an ethanolic extract of C. cicadae mycelium (CCME), a traditional medicinal mushroom, was studied for its potential in lowering IOP in rat and rabbit models. Data showed that CCME could significantly (60.5%) reduce the IOP induced by microbead occlusion after 56 days of oral administration. The apoptosis of retinal ganglion cells (RGCs) in rats decreased by 77.2%. CCME was also shown to lower the IOP of normal and dextrose-infusion-induced rabbits within 60 min after oral feeding. There were dose effects, and the effect was repeatable. The active ingredient, N6-(2-hydroxyethyl)-adenosine (HEA), was also shown to alleviate 29.6% IOP at 0.2 mg/kg body weight in this rabbit model. CCME was confirmed with only minor inhibition in the phosphorylated myosin light chain 2 (pMLC2) pathway.  相似文献   

7.
The chemotherapeutic agent 5‐Fluorouracil (5‐FU) can induce salivary gland hypofunction (SGH); however, previous studies did not reach final conclusions on the influence of this drug on glandular tissue. Thus, the aim of this study was to investigate the effect of 5‐FU on submandibular (SMs) and sublingual glands (SLs), as well as, the effect of laser phototherapy (LPT) on SGH induced by 5‐FU. Eighty‐five hamsters were divided into three groups: control (C), chemotherapy (CT) and laser (L), and the SGH was induced by two injections of 5‐FU in groups CT and L. The irradiation was performed using a diode (λ780 nm/20 mW/5 J cm?2/0.2 J and 10 s per point/spot size of 0.04 cm2) and applied daily. On the euthanasia day, SMs and SLs were removed and biochemical analyses were carried out. The lactate dehydrogenase activity was increased in group CT when compared with group C for SLs and SMs (P < 0.05). In addition, the peroxidase and catalase activities were increased and superoxide dismutase was decreased by 5‐FU (P < 0.05). However, LPT appears to be a protective mechanism against oxidative stress, tending to alter the activity of these antioxidant enzymes, suggesting LPT as a promising therapy to modulate the 5‐FU harmful effect.  相似文献   

8.
INTRODUCTION: Low level laser therapy (LLLT) has been shown to enhance collagen production and wound healing but its effect on cartilage repair from biomechanical point of view is not known yet. The aim of present study was to evaluate the biomechanical behaviour of repairing osteochondral defect in rabbits which received a pulsed low-level gallium-arsenide (Ga-As) laser irradiation. MATERIALS AND METHODS: Osteochondral defects with 5mm diameter and 4mm in depth induced by drilling in right femoral patellar grooves of 41 adolescent male rabbits. They were divided into experimental and control groups. Experimental group received pulsed Ga-As (890nm) laser irradiation with energy density of 4.8J/cm(2). The rabbits in control group received placebo LLLT with shut-down equipment. The control defects were allowed to heal spontaneously. Each group were divided into three subgroups: A, B and C. Subgroups A, B and C were sacrificed on 4, 8, and 16 weeks after surgery. The knee joint were removed, and the defects were examined biomechanically by in situ-indentation method. The thickness, instantaneous and equilibrium indentation stiffness was measured during the test. Data were analysed using ANOVA and independent sample t-test. RESULT: While no difference was observed in the repaired cartilage biomechanical properties among 4th, 8th, 16th weeks in study groups. The equilibrium indentation stiffness of experimental group was significantly higher in 8th week in comparison with control group. CONCLUSION: LLLT significantly enhances the stiffness of repairing tissue in the 8th week post injury in osteochondral defects in rabbits.  相似文献   

9.
Laser ablation coupled to inductively coupled plasma mass spectrometry has been developed for the elemental imaging of Mg, Fe and Cu distribution in histological tissue sections of fixed eyes, embedded in paraffin, from human donors (cadavers). This work presents the development of a novel internal standard correction methodology based on the deposition of a homogeneous thin gold film on the tissue surface and the use of the 197Au+ signal as internal standard. Sample preparation (tissue section thickness) and laser conditions were carefully optimized, and internal normalisation using 197Au+ was compared with 13C+ correction for imaging applications. 24Mg+, 56Fe+ and 63Cu+ distributions were investigated in histological sections of the anterior segment of the eye (including the iris, ciliary body, cornea and trabecular meshwork) and were shown to be heterogeneously distributed along those tissue structures. Reproducibility was assessed by imaging different human eye sections from the same donor and from ten different eyes from adult normal donors, which showed that similar spatial maps were obtained and therefore demonstrate the analytical potential of using 197Au+ as internal standard. The proposed analytical approach could offer a robust tool with great practical interest for clinical studies, e.g. to investigate trace element distribution of metals and their alterations in ocular diseases.
Figure
Development of a new internal standard correction methodology for qualitative elemental imaging by LA-ICP-MS  相似文献   

10.
Chloraluminum sulfonated phthalocyanine was administered in 22 albino rabbits either by means of bolus i.v. (intravenous) injection (6 mg/kg) or as continuous i.v. infusion. Eight animals were used for the comparison of plasma phthalocyanine change as a factor of time, using the two administration methods. Photothrombosis of corneal neovascularization was carried out in the remaining 14 animals either after bolus phthalocyanine injection or after continuous i.v. infusion. Irradiation of the right eye's vessels started 10 min after the injection in the bolus group and 35 min after initiation of infusion in the continuous infusion group. The vessels of each animal's left eye were irradiated 1 h after the irradiation of the right eye. The initial peak of phthalocyanine concentration after bolus injection was followed by a rapid decrease of plasma levels. In the continuous infusion group,30–40 min after the initiation of infusion, plasma phthalocyanine concentration reached a plateau that remained stable for the rest of the80–90 min of infusion. Using bolus injection, a significant decrease of phthalocyanine concentration was accompanied by a significant increase of irradiation time necessary for neovascularization thrombosis in the two eyes. Irradiation time as well as phthalocyanine concentration did not differ between the two eyes using continuous infusion. Vascular photosensitivity seemed to be higher using continuous i.v. infusion of phthalocyanine. Continuous i.v. infusion represents an interesting alternative to bolus injection for phthalocyanine-mediated corneal neovascularization photothrombosis.  相似文献   

11.
The aim of the study was to investigate the effects of long-term exposure (45 days) to growth promoters: clenbuterol (CB: 1 mg kg(-1) bw) and/or dexamethasone (DEX: 0.1 mg kg(-1) bw), in adrenal gland morphology, and the possibility of recovery after the withdrawal of drug treatment. Animals were sacrificed at different days of withdrawal (W0, W5, W10, W15 and W20), and adrenal glands processed for histopathology and immunohistochemistry. Adrenals of CB treatment showed typical features of long-term administration of beta-agonists at W0 such as capillary dilatation in the fasciculata-reticularis zone, and this feature was also presented at W20. Adrenals of CB+DEX treatments showed the same results of CB treatment at days W0 and W20. However, DEX treatment presented the typical results of the exposure to corticoids with the atrophy of adrenal cortex. Immunohistochemistry of adrenal cortex steroidogenic enzymes (P450: scc, 3beta-HSD, aromatase) denoted that neither positive staining nor localization was affected by treatments. Aromatase enzyme was immunolocalized in adrenal medulla cells in controls as well as in treated groups. The immunolocalization of glucocorticoid receptors showed an increase in CB (+++) and CB+DEX (++) treatments compared to the control group (0) and DEX treatment (0). Histopathological and immunohistochemical results are closely related to those found for adrenal endocrine function. We can conclude that chronic administration of growth promoters influence adrenal morphology and glucocorticoid receptor expression.  相似文献   

12.
One inescapable feature of life on the earth is exposure to ionizing radiation. The thyroid gland is one of the most sensitive organs to gamma‐radiation and endocrine disrupters. Low‐level laser therapy (LLLT) has been used to stimulate tissue repair, and reduce inflammation. The aim of this study was to gauge the value of using Helium–Neon laser to repair the damaged tissues of thyroid gland after gamma‐irradiation. Albino rats were used in this study (144 rats), divided into control, gamma, laser, and gamma plus laser‐irradiated groups, each group was divided into six subgroups according to time of treatment (total six sessions). Rats were irradiated once with gamma radiation (6 Gy), and an external dose of laser (Wavelength 632.8 nm, 12 mW, CW, Illuminated area 5.73 cm2, 2.1 mW cm?2, 120 s, 1.4 J, 0.252 J cm?2) twice weekly localized on thyroid region of the neck, for a total of six sessions. Animals were sacrificed after each session. Analysis included thyroid function, oxidative stress markers, liver function and blood picture. Results revealed improvement in thyroid function, liver function and antioxidant levels, and the blood cells count after LLLT.  相似文献   

13.
Benzalkonium (BAK) chloride is the most commonly used preservative in eye drops. It is generally composed of benzyldimethyldodecylammonium C12 and benzyldimethyltetradecylammonium C14 and is supposed to increase penetration of active compounds. However, numerous studies have reported its toxic effect to ocular surface especially in long-term treatments like against glaucoma, a sight-threatening disease. Albino rabbits were treated with a hyperosmolar solution and a high concentration of BAK solution for 1 month. Enucleated eyes were cryo-sectioned and analysed by mass spectrometry. Mass spectrometry imaging using time-of-flight secondary ion mass spectrometry (TOF-SIMS) has been used to characterize the spatial distribution and to determine the relative quantity of BAK at the surface of rabbit eye sections. Liquid chromatography coupled with mass spectrometry (LC-MS) using a hybrid linear ion trap-Orbitrap® mass spectrometer was used to obtain relative quantification of BAK at the sample surface. TOF-SIMS images of BAK ions indicated a distribution at the ocular surface and in deeper structures. Didecyldimethylammonium (DDMAC), which is used in hospitals as a substitute for BAK, was also detected and showed an accumulation around the eyes. After extraction with acetonitrile and chromatographic separation using a Gemini C18 column and an original elution gradient, the relative quantities of BAK and DDMAC present in the whole eye section surface were determined. This LC-MS method was validated in terms of limits of quantification, linearity, repeatability and reproducibility and its feasibility was evaluated in surgically obtained human samples. Specimens of iris, lens capsule or trabecular meshwork were found with significant levels of BAK and DDMAC, thus confirming the penetration of BAK in deep ocular structures, with potential deleterious effects induced by this cytotoxic compound. The analytical method developed here could therefore be of primary interest in the field of pharmaco-toxicology in order to localise, identify and quantify drugs or xenobiotic compounds present at biological sample surfaces.
Figure
Mass spectrometry image (TOF-SIMS) of rabbit eye conjunctiva treated with benzalkonium chloride  相似文献   

14.
This paper compares the viability of over 700 NG108 cells after membrane disruption either with a single 3 ns pulse at 337 nm or with a 5 ms train of 110 fs pulses (80 MHz) at 770 nm. Cell viability was monitored over a period of 12 h so as to understand the effect of laser ablation-induced cell apoptosis. The use of one-photon membrane disruption with the UV–laser resulted in ∼36% cell viability after 12 h while the use of two-photon ablation with the femtosecond laser resulted in a much higher viability of ∼79% after 12 h, which was the same within error of the ∼79% viability of cells in the control group. Changing the laser power to achieve a 90% probability of membrane disruption (PMD) from 50% PMD did not change the percentage of viable cells after 12 h, regardless of whether one- or two-photon ablation was employed. A systematic comparison between different methods of cellular ablation and their effect upon the viability of single cells has not been done before over such a long time frame. These results show the importance of laser choice when cell viability postsurgery is a concern.  相似文献   

15.
This paper investigates the use of NiO particles to enhance the vapour sensing properties of polyethylene adipate (PEA)\carbon black (CB) composite materials. Four PEA\CB suspensions were prepared with 0, 10, 20 and 30 w/w% NiO, respectively. Hypermer PS3 surfactant was shear mixed into each of the suspensions for 300 s to achieve a homogenous dispersion and to prevent reagglommeration of both the CB and NiO particles. A 0.1 μl drop of each composite was deposited between Cu electrodes on a printed circuit board (PCB) substrate using a microlitre syringe. The samples were allowed to dry for 24 h in an oven at 333 K to remove any remaining solvent. After preparation, the sensors were exposed to propanol and butanol at concentrations ranging from 0 to 25 000 ppm in steps of 5000 ppm. The response of the PEA\CB sensors improved significantly as the concentration of NiO particles in the material increased and maximum relative differential responses as high as 37% and 92.8% were recorded after exposure to 25 000 ppm propanol and butanol, respectively. This high response can be explained using the Flory–Huggins interaction parameter along with structural changes in the polymer composite caused by the addition of NiO. This paper concludes that NiO particles can be used as a method to increase the sensitivity of existing conducting polymer composite gas sensing materials.  相似文献   

16.
Serendipitously, mono‐allyloxylated cucurbit[7]uril (AO1CB[7]) was discovered to act as an unconventional amphiphile which self‐assembles into light‐responsive vesicles (AO1CB[7]VC) in water. Although the mono‐allyloxy group, directly tethered on the periphery of CB[7], is much shorter (C4) than the hydrophobic tails of conventional amphiphiles, it played an important role in vesicle formation. Light‐activated transformation of the allyloxy group by conjugation with glutathione was exploited as a remote tool to disrupt the vesicle. The vesicle showed on‐demand release of cargo upon irradiation by a laser, after they were internalized into cancer cells. This result demonstrated the potential of AO1CB[7]VC as a new type of light‐responsive intracellular delivery vehicle for the release of therapeutic cargo, within cells, on demand.  相似文献   

17.
The aim of this study was to evaluate the effects of a Gallium Arsenide (GaAs) laser, using a high final energy of 4.8 J, during muscle regeneration after cryoinjury. Thirty Wistar rats were divided into three groups: Control (C, n = 10); Injured (I, n = 10) and Injured and laser treated (Injured/LLLT, n = 10). The cryoinjury was induced in the central region of the tibialis anterior muscle (TA). The applications of the laser (904 nm, 50 mW average power) were initiated 24 h after injury, at energy density of 69 J cm?1 for 48 s, for 5 days, to two points of the lesion. Twenty‐four hours after the final application, the TA muscle was removed and frozen in liquid nitrogen to assess the general muscle morphology and the gene expression of TNF‐α, TGF‐β, MyoD, and Myogenin. The Injured/LLLT group presented a higher number of regenerating fibers and fewer degenerating fibers (P < 0.05) without changes in the collagen remodeling. In addition, the Injured/LLLT group presented a significant decrease in the expression of TNF‐α and myogenin compared to the injured group (P < 0.05). The results suggest that the GaAs laser, using a high final energy after cryoinjury, promotes muscle recovery without changing the collagen remodeling in the muscle extracellular matrix.  相似文献   

18.
Recently, intravascular low-power red laser light (LPRLL) therapy has been proposed for the prevention of postangioplasty restenosis due to the observed inhibition of experimental neointimal formation. The objective of this study was to determine the impact of endoluminal LPRLL on vascular levels of inducible nitric oxide synthase (iNOS) and cyclic guanosine monophosphate (cGMP) to help define the mechanism of this effect. Eight atherosclerotic male adult New Zealand White rabbits weighing 4-6 kg were used in these studies. The iliac arteries were treated in separate zones with: (1) balloon inflation only; (2) laser illumination only; and (3) balloon inflation + laser illumination. An uninjured zone of the iliac artery served as a control. Laser irradiation (630 nm) was delivered to the vessel wall via a Cold laser Illuminator (Cook, Inc., Bloomington, IN), with a 3 mm-diameter balloon. Experiments demonstrated that vascular cGMP levels obtained immediately following treatment in the balloon only group was the lowest (0.29 +/- 0.05 pmol/mg protein) and significantly lower compared with the uninjured controls (1.01 +/- 0.07 pmol/ mg protein) (P < 0.001). In the laser only treated group cGMP levels were significantly increased (2.87 +/- 0.12 pmol/mg protein) compared with the uninjured control (P < 0.001) and the balloon only group (P < 0.001). Vascular cGMP levels in the balloon + laser group (2.09 +/0.07 pmol/mg protein) was also increased compared to the balloon only (P < 0.001) and control (P < 0.001) groups. Qualitative analysis of Western blot demonstrated that laser illumination induces iNOS. In contrast balloon dilatation did not induce iNOS. Balloon + laser treatment, however, tended to restore the expression of iNOS. Our study demonstrated that intravascular low dose laser irradiation induces iNOS and elevates vascular cGMP in an in vivo atherosclerotic rabbit model.  相似文献   

19.
A water‐based narrow‐band high‐efficiency dye laser was designed by means of a supramolecular host–guest chemical approach. The lasing characteristics of rhodamine B and sulforhodamine B (Kiton Red S) dyes in aqueous solution with the macrocyclic host cucurbit[7]uril (CB7) as additive were investigated in a narrow‐band dye laser setup. Significant improvements in both photostability and thermo‐optical properties of the aqueous CB7‐complexed dye systems were observed as compared to the uncomplexed dyes in ethanol solution. The tuning curves for the new dye–CB7–water systems were constructed by measuring the laser output at different wavelengths, which showed similar peak efficiencies and red‐shifted gains compared to the ethanolic solutions of the dyes, while dye laser operation revealed comparable pump threshold energies and slope efficiencies. The combined results render the dye–CB7–water system an attractive active medium for high‐repetition rate dye laser operation.  相似文献   

20.
Bone fractures are lesions of different etiology; may be associated or not to bone losses; and have different options for treatment, such as the use of biomaterials, guided bone regeneration, techniques considered effective on improving bone repair. Laser therapy has also been shown to improve bone healing on several models. The association of these three techniques has been well documented by our group using different models. This study aimed to assess, through Raman spectroscopy, the incorporation of calcium hydroxyapatite (CHA approximately 958 cm(-1)) on the repair of complete tibial fractures in rabbits treated with wire osteosynthesis (WO); treated or not with laser therapy; and associated or not with the use of BMPs and/or Guided Bone Regeneration. Complete tibial fractures were created in 12 animals that were divided into four groups: WO; WO+BMPs; WO+laser therapy; and WO+BMPs+laser therapy. Irradiation started immediately after surgery; was repeated at every other day during 2 weeks; and was carried out with lambda 790 nm laser light (4 J/cm(2) per point, 40 mW, phi approximately 0.5 cm(2), 16J per session). Animal death occurred after 30 days. Raman spectroscopy was performed at both the surface and the depth of the fracture site. Statistical analysis showed significant difference on the concentrations of CHA between surface and depth. The analysis in each of the areas showed at the depth of the fracture significant differences between all treatment groups (p<0.0001). Significant differences were also seen between WO+BMPs+laser therapy and WO (p<0.001) and WO+laser therapy (p<0.001). At the surface, significant difference was seen only between the treatment groups and the non-fractured subjects (p=0.0001). However, no significant difference was seen between the treatment groups (p=0.14). It is concluded that the use of NIR laser therapy associated to BMPs and GBR was effective in improving bone healing on the fractured bones as a result of the increasing deposition of CHA measured by Raman spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号