首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.

Purpose

To report the observation of brown adipose tissue (BAT) with low fat content in neonates with hypoxic–ischemic encephalopathy (HIE) after they have undergone hypothermia therapy.

Materials and Methods

The local ethics committee approved the imaging study. Ten HIE neonates (3 males, 7 females, age range: 2–3 days) were studied on a 3-T MRI system using a low-flip-angle (3°) six-echo proton-density-weighted chemical-shift-encoded water-fat pulse sequence. Fat-signal fraction (FF) measurements of supraclavicular and interscapular (nape) BAT and adjacent subcutaneous white adipose tissues (WAT) were compared to those from five non-HIE neonates, two recruited for the present investigation and three from a previous study.

Results

In HIE neonates, the FF range for the supraclavicular, interscapular, and subcutaneous regions was 10.3%–29.9%, 28.0%–57.9%, and 62.6%–88.0%, respectively. In non-HIE neonates, the values were 23.7%–42.2% (p = 0.01), 45.4%–59.5% (p = 0.06), and 67.8%–86.3% (p = 0.38), respectively. On an individual basis, supraclavicular BAT FF was consistently the lowest, interscapular BAT values were higher, and subcutaneous WAT values were the highest (p < 0.01).

Conclusion

We speculate that hypothermia therapy in HIE neonates likely promotes BAT-mediated non-shivering thermogenesis, which subsequently leads to a depletion of the tissue's intracellular fat stores. We believe that this is consequently reflected in lower FF values, particularly in the supraclavicular BAT depot, in contrast to non-HIE neonates.  相似文献   

2.

Purpose

The purpose was to compare T2* relaxation times and proton density fat-fraction (PDFF) values between brown (BAT) and white (WAT) adipose tissue in lean and ob/ob mice.

Materials and Methods

A group of lean male mice (n=6) and two groups of ob/ob male mice placed on similar 4-week (n=6) and 8-week (n=8) ad libitum diets were utilized. The animals were imaged at 3 T using a T2*-corrected chemical-shift-based water–fat magnetic resonance imaging (MRI) method that provides simultaneous estimation of T2* and PDFF on a voxel-wise basis. Regions of interest were drawn within the interscapular BAT and gonadal WAT depots on co-registered T2* and PDFF maps. Measurements were assessed using analysis of variance, Bonferroni-adjusted t test for multigroup comparisons and the Tukey post hoc test.

Results

Significant differences (P<.01) in BAT T2* and PDFF were observed between the lean and ob/ob groups. The ob/ob animals exhibited longer BAT T2* and greater PDFF than lean animals. However, only BAT PDFF was significantly different (P<.01) between the two ob/ob groups. When comparing BAT to WAT within each group, T2* and PDFF values were consistently lower in BAT than WAT (P<.01). The difference was most prominent in the lean animals. In both ob/ob groups, BAT exhibited very WAT-like appearances and properties on the MRI images.

Conclusion

T2* and PDFF are lower in BAT than WAT. This is likely due to variations in tissue composition. The values were consistently lower in lean mice than in ob/ob mice, suggestive of the former's greater demand for BAT thermogenesis and reflective of leptin hormone deficiencies and diminished BAT metabolic activity in the latter.  相似文献   

3.
A pilot study was carried out to investigate the performance of ultrasound stiffness imaging methods namely Ultrasound Elastography Imaging (UEI) and Acoustic Radiation Force Impulse (ARFI) Imaging. Specifically their potential for characterizing different classes of solid mass lesions was analyzed using agar based tissue mimicking phantoms. Composite tissue mimicking phantom was prepared with embedded inclusions of varying stiffness from 50 kPa to 450 kPa to represent different stages of cancer. Acoustic properties such as sound speed, attenuation coefficient and acoustic impedance were characterized by pulse echo ultrasound test at 5 MHz frequency and they are ranged from (1564 ± 88 to 1671 ± 124 m/s), (0.6915 ± 0.123 to 0.8268 ± 0.755 db cm-1 MHz-1) and (1.61×106 ± 0.127 to 1.76 × 106 ± 0.045 kg m-2 s-1) respectively. The elastic property Young’s Modulus of the prepared samples was measured by conducting quasi static uni axial compression test under a strain rate of 0.5 mm/min upto 10 % strain, and the values are from 50 kPa to 450 kPa for a variation of agar concentration from 1.7% to 6.6% by weight. The composite phantoms were imaged by Siemens Acuson S2000 (Siemens, Erlangen, Germany) machine using linear array transducer 9L4 at 8 MHz frequency; strain and displacement images were collected by UEI and ARFI. Shear wave velocity 4.43 ± 0.35 m/s was also measured for high modulus contrast (18 dB) inclusion and X.XX m/s was found for all other inclusions. The images were pre processed and parameters such as Contrast Transfer Efficiency and lateral image profile were computed and reported. The results indicate that both ARFI and UEI represent the abnormalities better than conventional US B mode imaging whereas UEI enhances the underlying modulus contrast into improved strain contrast. The results are corroborated with literature and also with clinical patient images.  相似文献   

4.
OBJECTIVES: The objectives of this study were to develop protocols that measure abdominal fat and calf muscle lipids with magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS), respectively, at 3 T and to examine the correlation between these parameters and insulin sensitivity. MATERIALS AND METHODS: Ten nondiabetic subjects [five insulin-sensitive (IS) subjects and five insulin-resistant (IR) subjects] were scanned at 3 T. Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) were segmented semiautomatically from abdominal imaging. Intramyocellular lipids (IMCL) in calf muscles were quantified with single-voxel MRS in both soleus and tibialis anterior muscles and with magnetic resonance spectroscopic imaging (MRSI). RESULTS: The average coefficient of variation (CV) of VAT/(VAT+SAT) was 5.2%. The interoperator CV was 1.1% and 5.3% for SAT and VAT estimates, respectively. The CV of IMCL was 13.7% in soleus, 11.9% in tibialis anterior and 2.9% with MRSI. IMCL based on MRSI (3.8+/-1.2%) were significantly inversely correlated with glucose disposal rate, as measured by a hyperinsulinemic-euglycemic clamp. VAT volume correlated significantly with IMCL. IMCL based on MRSI for IR subjects was significantly greater than that for IS subjects (4.5+/-0.9% vs. 2.8+/-0.5%, P=.02). CONCLUSION: MRI and MRS techniques provide a robust noninvasive measurement of abdominal fat and muscle IMCL, which are correlated with insulin action in humans.  相似文献   

5.
Comparison of polarized-light propagation in biological tissue and phantoms   总被引:7,自引:0,他引:7  
We demonstrate significant differences in the propagation of polarized light through biological tissue compared with two common tissue phantoms. Depolarization of linearly and circularly polarized light was measured versus propagation distance by use of two independent measurement techniques. The measurements were performed on adipose and myocardial tissues and on tissue phantoms that consisted of polystyrene microsphere suspensions and Intralipid. The results indicate that, in contrast with results obtained in tissue phantoms, linearly polarized light survives through longer propagation distances than circularly polarized light in biological tissue.  相似文献   

6.
7.
8.
9.
T1rho-weighted MRI is a novel basis for generating tissue contrast. However, it suffers from sensitivity to B1 inhomogeneity. First, excitation with a spatially varying B1 causes flip-angle artifacts and second, spin locking with an inhomogeneous B1 results in non-uniform T1rho contrast. In this study, we overcome the former complication with a specially designed spin-locking pulse sequence and we successfully obtain T1rho-weighted images with a surface coil. In this pulse sequence, the spin-lock pulse was divided into segments of equal duration and alternating phase. This "self-compensating" T1rho-preparatory pulse sequence was analyzed and the effect of an inhomogeneous B1 field was simulated using the Bloch equations. T1rho-weighted MR images of a phantom and a human knee joint in vivo were obtained on a clinical scanner with a surface coil to demonstrate the utility of the pulse sequence. The self-compensating T1rho-prepared pulses sequence resulted in substantially reduced image artifacts compared to the conventional, single-phase spin-lock pulse.  相似文献   

10.
We report a method for measuring shear wave velocity in soft materials using phase stabilized swept source optical coherence tomography (PhS-SSOCT). Wave velocity was measured in phantoms with various concentrations of gelatin and therefore different stiffness. Mechanical waves of small amplitudes (??10 ??m) were induced by applying local mechanical excitation at the surface of the phantom. Using the phase-resolved method for displacement measurement described here, the wave velocity was measured at various spatially distributed points on the surface of the tissue-mimicking gelatin-based phantom. The measurements confirmed an anticipated increase in the shear wave velocity with an increase in the gelatin concentrations. Therefore, by combining the velocity measurements with previously reported measurements of the wave amplitude, viscoelastic mechanical properties of the tissue such as cornea and lens could potentially be measured.  相似文献   

11.
To quantify intragastric fat volume and distribution with accelerated magnetic resonance (MR) imaging using signal model-based dictionaries (DICT) in comparison to conventional parallel imaging (CG-SENSE). This study was approved by the local ethics committee and written informed consent was obtained. Seven healthy subjects were imaged after intake of a lipid emulsion and data at three different time points during the gastric emptying process was acquired in order to cover a range of fat fractions. Fully sampled and prospectively undersampled image data at a reduction factor of 4 were acquired using a multi gradient echo sequence at 1.5T. Retrospectively and prospectively undersampled data were reconstructed with DICT and CG-SENSE. Image quality of the retrospectively undersampled data was assessed relative to the fully sampled reference using the root mean square error (RMSE). In order to assess the agreement of fat volumes and intragastric fat distribution, Bland-Altman analysis and linear regression were performed on the data. The RMSE in intragastric content (ΔRMSE = 0.10 ± 0.01, P < 0.001) decreased significantly with DICT relative to CG-SENSE. CG-SENSE overestimated fat volumes (bias 2.1 ± 1.3 mL; confidence limits 5.4 and − 1.1 mL) in comparison to the prospective DICT reconstruction (bias − 0.1 ± 0.7 mL; confidence limits 1.8 and − 2.0 mL). There was a good agreement in fat distribution between the images reconstructed by retrospective DICT and the reference images (regression slope: 1.01, R2 = 0.961). Accelerating gastric MRI by integrating a dictionary-based signal model allows for improved image quality and increases accuracy of fat quantification during breathholds.  相似文献   

12.
13.
Complete dissection is the current reference method to quantify muscle and fat tissue on pig carcasses. Magnetic resonance imaging (MRI) is an appropriate nondestructive alternative method that can provide reliable and quantitative information on pig carcass composition without losing the spatial information. We have developed a method to quantify the amount of fat tissue and muscle in gradient echo MR images. This method is based on the method proposed by Shattuck et al. [12]. It provides segmentation of pure tissue and partial volume voxels, which allows separation of muscle and fat tissue including the fine insertions of intermuscular fat. Partial volume voxel signal is expected to be proportional to the signals of pure tissue constituting them or at least to vary monotonously with the proportion of each tissue. However, it is not always the case with gradient echo sequence due to the chemical shift effect. We studied this effect on a fat tissue/muscle interface model with variable proportion of water in the fat tissue and variable TE. We found that at TE=8 ms, for a 0.2-T MRI system, the requirement of Shattuck's method were filled thanks to the presence of water in fat tissue. Moreover, we extended the segmentation method with a simple correction scheme to compute more accurately the proportions of each tissue in partial volume voxels. We used this method to evaluate the fat tissue and muscle on 24 pig bellies using a gradient echo sequence (TR 700 ms, TE 8 ms, slice thickness 8 mm, number of averages 8, flip angle 90 degrees , FOV 512 mm, matrix 512*512, Rect. FOV 4/8, 19 slices, space between slices 2 mm). The image analysis results were compared with dissection results giving a prediction error of the muscle content (mean=2.7 kg) of 88.9 g and of the fat content (mean=2.7 kg) of 115.8 g without correction of the chemical shift effect in the computation of partial volume fat content. The correction scheme improved these results to, respectively, 81.5 and 107.1 g.  相似文献   

14.
In shear wave elasticity imaging (SWEI), mechanical excitation within the tissue is remotely generated using radiation force of focused ultrasound. The induced shear strain is subsequently detected to estimate visco-elastic properties of tissue and thus aid diagnostics. In this paper, the mechanical response of tissue to radiation force was detected using a modified ultrasound Doppler technique. The experiments were performed on tissue mimicking and tissue containing phantoms using a commercial diagnostic scanner. This scanner was modified to control both the pushing and probing beams. The pushing beam was fired repetitively along a single direction while interlaced probing beams swept the surrounding region of interest to detect the induced motion. The detectability of inhomogeneous inclusions using ultrasonic Doppler SWEI method has been demonstrated in this study. The displacement fields measured in elastic phantoms clearly reveal the oscillatory nature of the mechanical relaxation processes in response to impulsive load due to the boundary effects. This relaxation dynamics was also present in cooked muscle tissue, but was not detected in more viscous and less elastic phantom and raw muscles. Presence of a local heterogeneity in the vicinity of the focal region of the pushing beam results in generation of a standing wave field pattern which is manifested in the oscillatory response of the excited region of the tissue. There has been made an assumption that dynamic characteristics of the relaxation process may be used for visualization of inhomogeneities.  相似文献   

15.

Objective

The objective was to evaluate the usefulness of T1 mapping in distinguishing hepatic hemangiomas from metastatic tumors on gadoxetic-acid-enhanced magnetic resonance imaging.

Methods

We examined 20 hemangiomas in 14 patients and 21 metastatic tumors in 11 patients. We performed T1 mapping using the double-flip angle method before and after the injection of gadoxetic acid. Quantitative evaluation was carried out using the pre- and post-contrast enhancement ratios (CERs), and qualitative evaluation was conducted to evaluate the added value of T1 mapping using receiver operating characteristics analysis.

Results

The mean CERs of metastatic tumors at 70 s, 240 s and 20 min after the injection of gadoxetic acid were 1.54 (95% confidence interval: 1.37–1.71), 1.47 (1.34–1.6) and 1.30 (1.19–1.41); those of hemangiomas were 3.36 (2.41–4.31), 3.06 (2.44–3.68) and 2.20 (2.02–2.38), respectively. The mean CERs of hemangiomas were significantly higher than those of metastatic tumors (P< .05). When the mean CER cutoff value 20 min after the injection was set at 1.6, the diagnostic sensitivity of hepatic hemangiomas was 100%. There was no added value observed statistically in the qualitative evaluation of T1 mapping (P> .05).

Conclusion

It is valuable to evaluate quantitatively T1 mapping 20 min after hepatobiliary phase acquisition in the case of difficulty in distinguishing hepatic hemangiomas from metastatic tumors qualitatively.  相似文献   

16.
Twenty-three relapsing remitting multiple sclerosis (RRMS) patients and 14 controls were imaged to produce normal-appearing white and grey matter T1 histograms. These were used to assess whether histogram measures from principal component analysis (PCA) and linear discriminant analysis (LDA) out-perform traditional histogram metrics in classification of T1 histograms into control and RRMS subject groups and in correlation with the expanded disability status score (EDSS). The histograms were classified into one of two groups using a leave-one-out analysis. In addition, the patients were scanned serially, and the calculated parameters correlated with the EDSS. The classification results showed that the more complex techniques were at least as good at classifying the subjects as histogram mean, peak height and peak location, with PCA/LDA having success rates of 76% for white matter and 68%/65% for grey matter. No significant correlations were found with EDSS for any histogram parameter. These results indicate that there is much information contained within the grey matter as well as the white matter histograms. Although in these histograms PCA and LDA did not add greatly to the discriminatory power of traditional histogram parameters, they provide marginally better performance, while relying only on data-driven feature selection.  相似文献   

17.
A 63-year-old woman was found to have a left breast mass after quadrantectomy and radiation for bilateral breast cancer on postoperative cyclic examination. Intramammary recurrence could not be excluded by physical examination, mammography, or ultrasound examination. MR imaging with fat suppression technique revealed an oil-containing lesion, indicating fat necrosis. It was confirmed histologically that the mass-forming lesion included no cancer tissue. MR imaging with fat suppression technique appears to be a promising method for identification of postoperative mass lesions of the breast.  相似文献   

18.
Promising recent investigations have shown that breast malignancies exhibit restricted diffusion on diffusion-weighted imaging (DWI) and may be distinguished from normal tissue and benign lesions in the breast based on differences in apparent diffusion coefficient (ADC) values. In this study, we assessed the influence of intravoxel fat signal on breast diffusion measures by comparing ADC values obtained using a diffusion-weighted single shot fast spin-echo sequence with and without fat suppression. The influence of breast density on ADC measures was also evaluated. ADC values were calculated for both tumor and normal fibroglandular tissue in a group of 21 women with diagnosed breast cancer. There were systematic underestimations of ADC for both tumor and normal breast tissue due to intravoxel contribution from fat signal on non–fat-suppressed DWI. This ADC underestimation was more pronounced for normal tissue values (mean difference=40%) than for tumors (mean difference=27%, P<.001) and was worse in women with low breast tissue density vs. those with extremely dense breasts (P<.05 for both tumor and normal tissue). Tumor conspicuity measured by contrast-to-noise ratio was significantly higher on ADC maps created with fat suppression and was not significantly associated with breast density. In summary, robust fat suppression is important for accurate breast ADC measures and optimal lesion conspicuity on DWI.  相似文献   

19.
20.
The water proton relaxation rate constant R(1)=1/T(1) (at 60 MHz) of blood serum is substantially increased by the presence of free Cu2+ ions at concentrations above normal physiological levels. Addition of chelating agents to serum containing paramagnetic Cu2+ nulls this effect. This was demonstrated by looking at the effect of adding a chelating agent-D-penicillamine (D-PEN) to CuSO4 and CuCl2 aqueous solutions as well as to rabbit blood serum. We propose that the measurement of water proton spin-lattice relaxation rate constants before and after chelation may be used as an alternative approach for monitoring the presence of free copper ions in blood serum. This method may be used in the diagnosis of some diseases (leukaemia, liver diseases and particularly Wilson's disease) because, in contrast to conventional methods like spectrophotometry which records the total number of both bound and free ions, the proton relaxation technique is sensitive solely to free paramagnetic ions dissolved in blood serum. The change in R(1) upon chelation was found to be less than 0.06 s(-1) for serum from healthy subjects but greater than 0.06 s(-1) for serum from untreated Wilson's patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号