首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The application of living anionic polymerization techniques for the functionalization of polymers and block copolymers is reviewed. The attachment of functional groups to polymeric chains of predetermined lengths and narrow molecular weight distributions is described. Carboxyls, hydroxyls, amines, halogens, double bonds, and many other functional groups can be placed at one or two ends in the center or evenly spaced along polymeric chains. Subsequent transformations of the functional groups further contribute to the versatility of such treatments. General methods based on the use, as terminators, of substituted haloalkanes, as well as the addition of living polymers or their initiators to diphenylethylenes, substituted with appropriate functional groups or molecules, are discussed. Another approach, based on the living polymerization of monomers with protected functional groups, is also discussed. It has been used for the preparation of polymers and copolymers with evenly spaced functional groups. The combination of living anionic polymerization techniques with controlled radical and cationic polymerizations is also described. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2116–2133, 2002  相似文献   

3.
Cyclopolymerization of 1,7-octadiynes using a ruthenium-based Grubbs catalyst, to produce conjugated polymers containing six-membered rings as repeat units is generally much slower than the corresponding polymerization of 1,6-heptadiynes, and thus it is considered less useful. Here, we demonstrate the regioselective cyclopolymerization of 4,5-disubstituted 1,7-octadiynes with considerably enhanced reactivity. Using a third generation Grubbs catalyst with a rapid initiation step, various conjugated polymers with low polydispersity indices (PDIs) could be synthesized under optimized conditions. Among the various monomers tested, those with bulky substituents underwent controlled polymerization within 1 h at room temperature, which was a significant improvement over previous reports. This led us to a more efficient preparation of fully conjugated block copolymers. Finally, owing to the fast cyclopolymerization, a synthetically challenging dendronized polymer was successfully prepared from a macromonomer containing two second generation dendrons at the 4 and 5 positions of 1,7-octadiyne, and its rod-like conformation was visualized using atomic force microscopy. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 274–279  相似文献   

4.
A series of alpha-functional maleimide polymethacrylates (M(n) = 4.1-35.4 kDa, PDi = 1.06-1.27) have been prepared via copper-catalyzed living radical polymerization (LRP). Two independent synthetic protocols have been successfully developed and the polymers obtained in multigram scale, with an 80-100% content of maleimide reactive chain ends, depending on the method employed. A method for the synthesis of amino-terminated polymers, starting from Boc-protected amino initiators, has also been developed, as these derivatives are key intermediates in one of the two processes studied in the present work. The alternative synthetic pathway involves an initiator containing a maleimide unit "protected" as a Diels-Alder adduct. After the polymerization step, the maleimide functionality has been reintroduced by retro-Diels-Alder reaction, by simply refluxing those polymers in toluene for 7 h. These maleimido-terminated materials, poly(methoxyPEG((475))) methacrylates and poly(glycerol) methacrylates, differ for both the nature and size of the polymer side branches and showed an excellent solubility in water, a property that made them an ideal candidate for the synthesis of new polymer-(poly)peptide biomaterials. These functional polymers have been successfully employed in conjugation reactions in the presence of thiol-containing model substrates, namely, reduced glutathione (gamma-Glu-Cys-Gly) and the carrier protein, bovine serum albumin (BSA), in 100 mM phosphate buffer (pH 6.8-7.4) and ambient temperature.  相似文献   

5.
Conventional metal-catalyzed organic radical reactions and living radical polymerizations (LRP) performed in nonpolar solvents, including atom-transfer radical polymerization (ATRP), proceed by an inner-sphere electron-transfer mechanism. One catalytic system frequently used in these polymerizations is based on Cu(I)X species and N-containing ligands. Here, it is reported that polar solvents such as H(2)O, alcohols, dipolar aprotic solvents, ethylene and propylene carbonate, and ionic liquids instantaneously disproportionate Cu(I)X into Cu(0) and Cu(II)X(2) species in the presence of a diversity of N-containing ligands. This disproportionation facilitates an ultrafast LRP in which the free radicals are generated by the nascent and extremely reactive Cu(0) atomic species, while their deactivation is mediated by the nascent Cu(II)X(2) species. Both steps proceed by a low activation energy outer-sphere single-electron-transfer (SET) mechanism. The resulting SET-LRP process is activated by a catalytic amount of the electron-donor Cu(0), Cu(2)Se, Cu(2)Te, Cu(2)S, or Cu(2)O species, not by Cu(I)X. This process provides, at room temperature and below, an ultrafast synthesis of ultrahigh molecular weight polymers from functional monomers containing electron-withdrawing groups such as acrylates, methacrylates, and vinyl chloride, initiated with alkyl halides, sulfonyl halides, and N-halides.  相似文献   

6.
7.
A series of thermo-responsive and water-soluble 4- and 8-arm star-branched poly(2-(2′-methoxyethoxy)ethyl methacrylate) (poly(1)) with well-defined structures were synthesized by living anionic polymerization of 1, followed by a linking reaction with a core compound substituted with either four or eight benzyl bromide moieties. Furthermore, two kinds of sequentially different 4-arm star block copolymers composed of poly(1)-block-poly ((2,2-dimethyl-1,3-dioxolan-4-yl)methyl methacrylate) (poly(4)) were also synthesized by the same linking reaction of the corresponding AB or BA diblock copolymer anion with a core compound substituted with four benzyl bromide moieties. Thus, both well-defined 4-arm (AB)4 and (BA)4 star-block copolymers, whose A and B are poly(1) and poly(4) segments, were successfully synthesized. These star-block copolymers were quantitatively converted to the corresponding 4-arm (AC)4 and (CA)4 star-block copolymers with the same compositions by hydrolytic acetal cleavage of the poly(4) segment to poly(2,3-dihydroxypropyl methacrylate) (C segment). Poly(1) segments have LCST values and, on the other hand, both water-insoluble poly(4)s and water-soluble poly(2,3-dihydroxypropyl methacrylate)s are non-thermo-responsive segments. The thermo-responsive behavior of the resulting 4- and 8-arm star-branched poly(1) as well as the 4-arm (AB)4, (BA)4, (AC)4, and (CA)4 star-branched block copolymers has been extensively studied in terms of molecular weight, arm number, composition, and block sequence. As expected, such variables were observed to affect their LCST values. Interestingly, the thermo-responsive behavior of the 4-arm (AC)4 and (CA)4 stars was different from that of the block copolymers used as arm segments.  相似文献   

8.
This paper discusses recent progress in transition‐metal‐catalyzed living radical polymerizations, partly focusing on the search of metal complex catalysts that play a critical role in controlling polymer molecular weights, then‐distributions, and architectures. Following a brief overview of the design of initiating systems (initiators and metal catalysts), half‐metallocene‐type complex catalysts are presented that induce living radical polymerizations of methacrylates, acrylates, and styrene to give markedly narrow molecular weight distributions and controlled molecular weights. Some of these halfmetallocenes also work in water where suspension living radical polymerization is feasible.  相似文献   

9.
A homologous series of first- to fourth-generation (G1-G4) dendronized macromonomers, 5, 7, 10, and 12, was synthesized, and their polymerization behavior under radical conditions investigated. These conditions were thermally induced radical polymerization (TRP) and atom-transfer radical poymerization (ATRP). TRP was applied to all monomers and gave polymers PG1-PG4, whose molar masses range from several millions for PG1 to estimated several hundreds of thousands for PG2 and PG3, and to the oligomeric regime for PG4. ATRP was applied only to the G1 and G2 monomers 5 and 7. Kinetic studies on monomer 5 provide evidence that its polymerization proceeds in a controlled fashion. The highest monomer-to-initiator ratios which still gave monomodal molar mass distributions were 300:1 (for 5) and 100:1 (for 7), which correspond to achievable molar mass regime for PG1 and PG2 of approximately M(n)=100 000 (DP(calcd)(PG1)=200, DP(calcd)(PG2)=90). The polydispersities lie in the usual range (PDI=1.1-1.2). The molar masses were determined by GPC in DMF with calibration against absolute molar masses of PG1 determined by light scattering.  相似文献   

10.
The RAFT agents RAFT-1 and RAFT-2 were used for RAFT polymerization to synthesize well-defined bimodal molecular-weight-distribution (MWD) polymers. The system showed excellent controllability and "living" characteristics toward both the higher- and lower-molecular-weight fractions. It is important that bimodal higher-molecular-weight (HMW) polymers and block copolymers with both well-controlled molecular weight (MW) and MWD could be prepared easily due to the "living" features of RAFT polymerization. The strategy realized a mixture of higher/lower-molecular-weight polymers at the molecular level but also preserved the features of living radical polymerization (LRP) of the RAFT polymerization.  相似文献   

11.
12.
13.
The anionic polymerization of allyl methacrylate was carried out in tetrahydrofuran, both in the presence and in the absence of LiCl, with a variety of initiators, at various temperatures. It was found that (1,1-diphenylhexyl)lithium and the living oligomers of methyl methacrylate and tert-butyl methacrylate are suitable initiators for the anionic polymerization of this monomer. The temperature should be below −30°C, even in the presence of LiCl, for the living polymerization to occur. When the polymerization proceeded at −60°C, in the presence of LiCl, with (1,1-diphenylhexyl)-lithium as initiator, the number-average molecular weight of the polymer was directly proportional to the monomer conversion and monodisperse poly(allyl methacrylate)s with high molecular weights were obtained. 1H-NMR and FT-IR indicated that the α CC double bond of the monomer was selectively polymerized and that the allyl group remained unreacted. The prepared poly(allyl methacrylate) is a functional polymer since it contains a reactive CC double bond on each repeating unit. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2901–2906, 1997  相似文献   

14.
15.
Existing methods for polymerization in the “living” chain mode are briefly analyzed and opportunities for its use for synthesis of polymeric materials under industrial conditions are considered. Particular examples of application of radical polymerization in manufacture of homo- and copolymers are given, and prospects for development of basic and applied research in this topical area of polymeric chemistry in the nearest years are critically analyzed.  相似文献   

16.
Water-soluble polymers of acrylamide and acrylic acid that contain fullerene (more than 90% C60) have been prepared by the low-temperature radiation-induced living polymerization. In the absorption spectra of these polymers, a monotonically decaying absorption typical of the covalently bound fullerene or its associates is observed in the range 240–700 nm. The radiation initiation of the process allows preparation of high-purity polymers useful for designing medicinal preparations.  相似文献   

17.
We have earlier shown the possibility of preparation of crosslinked porous polymers by ionizing radiation-initiated reactions, and here we give an overview of the irradiation conditions—porous properties relationship for several methacrylate type copolymers. We illustrate the possible applications by an environment-friendly chromatographic column using water as eluent and a chemically stable scintillating polymer with excellent ion-binding capacity for possible continuous monitoring of radioactivity in natural waters.  相似文献   

18.
19.
We report a general method for the solid-phase synthesis of polymers via the ring-opening metathesis polymerization (ROMP). The method involves polymerization in solution to form a block copolymer, immobilization of the polymer via reaction of one block with a resin-bound functional group, modification of the other block, and liberation of the polymer from the resin. We demonstrated the utility of this approach by generating a block copolymer with an N-hydroxysuccinimidyl ester-substituted block (for on-resin functionalization) and a maleimide-substituted block (for conjugation to the resin). We showed that the Diels-Alder reaction can be employed to immobilize the polymers and that amines of diverse structure can be used to modify the resin-bound polymers. The reversibility of the furan-maleimide Diels-Alder adduct was exploited to liberate the polymer from the support. Specifically, treatment of the resin with cyclopentadiene resulted in complete polymer release. The resulting polymers are functional: they were as potent in assays with the lectin concanavalin A as polymers generated by traditional solution routes. We anticipate that this method can be used for the rapid synthesis of diverse polymers via ROMP.  相似文献   

20.
The addition polymerization of a ferrocenyl-substituted P[double bond]C bond leads to new redox-active polymers with functional ferrocene and phosphine moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号