首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electron transport properties of various molecular junctions based on the thiol-ended oligosilane are investigated through density functional theory combined with non-equilibrium Green's function formalism. Our calculations show that oligosilanes doped by the phenyl and-C10H6 groups demonstrate better rectifying effect and their rectification ratios are up to 15.41 and 65.13 for their molecular junctions. The current-voltage(I-V) curves of all the Au/ modified oligosilane/Au systems in this work are illustrated by frontier molecular orbitals, transmission spectra and density of states under zero bias. And their rectifying behaviors are analyzed through transmission spectra.  相似文献   

2.
Using density functional theory(DFT) combined with nonequilibrium Green's function investigates the electron-transport properties of several molecular junctions based on the PBTDT-CH=NH molecule, which is modified by one to four alkyl groups forming PBTDT-(CH_2)_nCH=NH. The electronic structures of the isolated molecules(thiol-ended PBTDT-(CH2)_nCH=N) have been investigated before the electron-transport calculations are performed. The asymmetric current-voltage characteristics have been obtained for the molecular junctions. Rectifying performance of Au/S-PBTDT-CH=N-S/Au molecular junction can be regulated by introducing alkyl chain. The N3 molecular junction exhibits the best rectifying effect. Its maximum rectifying ratio is 878, which is 80 times more than that of the molecular junction based on the original N molecular junction. The current-voltage(I-V) curves of all the sandwich systems in this work are illustrated by transmission spectra and molecular projection density analysis.  相似文献   

3.
The electron-transport properties of various substituted molecules based on the thiol-ended thiophene dimer (2Th1DT) are investigated through density functional theory (DFT) combined with nonequilibrium Green's function (NEGF) method. The current-voltage (I-V) curves of all the Au/2Th1DT/Au systems in this work display similar steplike features, while their equilibrium conductances show a large difference and some of these I-V curves are asymmetric distinctly. The results reveal the dependence of conductance on the energy level of the substituted 2Th1DT molecules. Rectification ratios are computed to examine the asymmetric properties of the I-V curves. The rectifying behavior in the 2Th1DT molecule containing the amino group close to the molecular end is more prominent than that in the other molecules. The rectifying behavior is analyzed through transmission spectra and molecular projected self-consistent Hamiltonian (MPSH) states. Slight negative differential resistance (NDR) can be observed in some of the systems. The electron-transport properties of 2Th1DT molecules containing different heteroatoms are also investigated. The results indicate that the current in heteroatom-containing molecules is larger than that in their pristine analogues, and lighter heteroatoms are more favorable than heavier heteroatoms for electron transport of the thiophene dimer.  相似文献   

4.
We report the synthesis and characterization of molecular rectifying diodes on silicon using sequential grafting of self-assembled monolayers of alkyl chains bearing a pi group at their outer end (Si/sigma-pi/metal junctions). We investigate the structure-performance relationships of these molecular devices, and we examine the extent to which the nature of the pi end group (change in the energy position of their molecular orbitals) drives the properties of these molecular diodes. Self-assembled monolayers of alkyl chains (different chain lengths from 6 to 15 methylene groups) functionalized by phenyl, anthracene, pyrene, ethylene dioxythiophene, ethylene dioxyphenyl, thiophene, terthiophene, and quaterthiophene were synthesized and characterized by contact angle measurements, ellipsometry, Fourier transform infrared spectroscopy, and atomic force microscopy. We demonstrate that reasonably well-packed monolayers are obtained in all cases. Their electrical properties were assessed by dc current-voltage characteristics and high-frequency (1-MHz) capacitance measurements. For all of the pi groups investigated here, we observed rectification behavior. These results extend our preliminary work using phenyl and thiophene groups (Lenfant et al., Nano Lett. 2003, 3, 741). The experimental current-voltage curves were analyzed with a simple analytical model, from which we extracted the energy position of the molecular orbital of the pi group in resonance with the Fermi energy of the electrodes. We report experimental studies of the band lineup in these silicon/alkyl pi-conjugated molecule/metal junctions. We conclude that Fermi-level pinning at the pi group/metal interface is mainly responsible for the observed absence of a dependence of the rectification effect on the nature of the pi groups, even though the groups examined were selected to have significant variations in their electronic molecular orbitals.  相似文献   

5.
Molecular electronics is very much about contacts, and thus understanding of any generic contact effect is essential to its advance. For example, it is still not obvious in how far variations in electrode roughness of macroscopic contacts can lead to rectification. Here we report an investigation of this contact effect on electronic transport properties using metal-insulator-metal planar junctions with a 5 nm thick bacteriorhodopsin-based insulator as model system. We demonstrate that the experimentally observed rectifying behavior is not an intrinsic property of the molecules used, but rather of the local contact quality. Even a slight increase in surface roughness of the bottom electrode gives rise to distinct rectifying behavior in these and, by extrapolation, possibly other molecular junctions.  相似文献   

6.
The electron transport properties of a novel pn junction nanowire caused by boron‐doping and phosphorus‐doping are investigated using density functional theory combined with the nonequilibrium Green's functions formalism. A satisfying rectification is observed. This is a reasonable result after the analysis of the molecular‐projected self‐consistent Hamitonian (MPSH) states, transmission spectra, the frontier orbitals, and the dipole moments. In contrast, the undoped chain has no rectification character. In addition, a negative differential resistance behavior is also observed at V = 1.8 ~ 2.2 V in the doped nanowire and it could be illustrated from the MPSH states and the transmission spectra. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

7.
We present the electron transport of pyridyl aza[60]fulleroid oligomers, abbreviated as C(60)NPy, which is based on the donor-barrier-acceptor (D-sigma-A) architecture, at a single molecular scale using scanning tunneling microscopy. A rectifying effect is observed in the current-voltage characteristics. The theoretical calculation shows that the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are well localized either on the Py moiety (donor) or on the C(60) moiety (acceptor), indicating the sigma-bridge decouples the LUMO and the HOMO of the donor and the acceptor, respectively. This structure accords well with the unimolecular rectifying model proposed by Aviram and Ratner [Chem. Phys. Lett. 1974, 29, 277]. The mechanism of the rectifying effect is understood by analyzing in detail the electron transport through energy levels of the donor and the acceptor of the C(60)NPy molecules. By directly comparing the experimental conductance peaks and the calculated density of states of the C(60)NPy, we find that the observed rectification is attributed to the asymmetric positioning of the LUMOs and the HOMOs of both sides of the acceptor and the donor of the C(60)NPy molecules with respect to the Fermi level of the electrodes. When a main voltage drop is over the molecule-electrode vacuum junction but a small fraction over the molecule itself, the shift of the energy levels between the donor and the acceptor will be small. This behavior deviates from the original proposal by Aviram and Ratner in which a large shift of the energy level is expected.  相似文献   

8.
The properties of electronic transport in an electronic device composed of a spatially symmetric phenyldithiolate molecule sandwiched between two gold electrodes with asymmetric contact are investigated by the first-principles study. It is found that the I-V and G-V characteristics of a device show significant asymmetry and the magnitudes of current and conductance depend remarkably on the variation of molecule-metal distance at one of the two contacts. Namely, an asymmetric contact would lead to the weak rectifying effects on the current-voltage characteristics of a molecular device. We also calculate self-consistently other microscopic quantities such as the local density of states, the total density of states, and the distribution of charges in the asymmetric molecular models under the applied bias. The results show that the highest-occupied molecular orbital (HOMO) is responsible for the resonant tunneling and the shifting of the HOMO due to the charging of the device under the bias voltage is the intrinsic origin of asymmetric I(G)-V characteristics.  相似文献   

9.
利用密度泛函理论和非平衡格林函数方法, 系统研究了正三角锯齿型石墨烯的电子输运特性. 研究表明: 正三角石墨烯的电流-电压(I-V)特性及整流效应与几何尺寸、边缘吸附原子的类型密切相关, 在其边缘吸附H原子和S原子的情况下, 小的正三角石墨烯有大的电流, 但有小的整流比; 改变边缘吸附原子的类型(用O原子替换H原子), 电流增大, 但其整流效应明显变低. 分析表明, 这种整流是由于正三角石墨烯前线轨道的空间分布不对称以及在正、负偏压下分子能级的非对称移动所致. 我们的研究对于认识正三角石墨烯的基本物性(电子结构及器件应用)有重要意义.  相似文献   

10.
Langmuir-Blodgett monolayers of a donor-acceptor diad TTF-sigma-(trinitrofluorene) (8) with an extremely low HOMO-LUMO gap (0.3 eV) have been used to create molecular junction devices that show rectification behavior. By virtue of structural similarities and position of molecular orbitals, 8 is the closest well-studied analogue of the model Aviram-Ratner unimolecular rectifier (TTF-sigma-TCNQ). Compressing the monolayer results in aligning the molecules, and is followed by a drastic increase in the rectification ratio. The direction of rectification depends on the electrodes used and is different in n-Si/8/Ti and Au/8/C16H33S-Hg junctions. The molecular nature of such behavior was corroborated by control experiments with fatty acids and by reversing the rectification direction with changing the molecular orientation (Au/D-sigma-A versus Au/A-sigma-D).  相似文献   

11.
The oriented assembly of molecules on metals is a requirement for rectification in planar metal-molecule-metal junctions. Here, we demonstrate how the difference in adsorption kinetics between dithiocarbamate and thioacetate anchor groups can be utilized to form oriented assemblies of asymmetric molecules that are bound to Au through the dithiocarbamate moiety. The free thioactate group is then used as a ligand to bind Au nanoparticles and to form the desired metal-molecule-metal junction. Besides allowing an asymmetric coupling to the electrodes, the molecules exhibit an asymmetric molecular backbone where the length of the alkyl chains separating the electrodes from a central, para-substituted phenyl ring differs by two methylene units. Throughout the junction fabrication, the layers were characterized by photoelectron spectroscopy, infrared spectroscopy, and scanning tunneling microscopy. Large area junctions using a conducting polymer interlayer between a mercury-drop electrode and the self-assembled monolayer prove the relationship between electrical data and molecular structure.  相似文献   

12.
One of the strategies to tune current-voltage behaviors in organic diodes is to combine field-induced charge transfer processes with schottky barrier. According to this principle, a rectifying diode with hysteresis effect was fabricated utilizing a hybrid of electroactive polystyrene derivative covalently tethered with electron-donor carbazole moieties and electrostatic linked with electron-acceptor CdTe nanocrystals. Current-voltage characteristics show an electrical switching behavior with some hysteresis is only observed under a negative bias, with three orders of On/Off current ratio. The hybrid material based rectifier exhibits a rectification ratio of six and its maximum rectified output current is about 5 × 10?5 A. The asymmetric switching is interpreted as the result of both field induced charge transfer and schottky barrier, capable of reducing the misreading of cross-bar memory. Meanwhile, chemical doping of CdTe nanocrystals instead of physical blend favor their uniform dispersion in matrix and stable operation of device.  相似文献   

13.
We have measured the current-voltage characteristics of conjugated oligo-tetrathiafulvalene-pyromelliticdiimide-imine (OTPI) wires ranging in length from 2.5 to 20.2 nm, contacted by Au electrodes. OTPI wires were built from Au substrates using alternating donor (tetrathiafulvalene, TTF) and acceptor (pyromelliticdiimide, PMDI) building blocks linked via aryl imine groups. Metal-molecule-metal junctions consisting of approximately 100 wires in parallel were prepared by contacting the wire films with an Au-coated atomic force microscope tip. The long OTPI wires exhibit a narrow band gap (<1.5 eV) and multiple redox states, which facilitate carrier injection from the Au contacts for hopping transport. We observe the theoretically predicted change in direct current (DC) transport from tunneling to hopping as a function of systematically controlled wire length, as well as strongly enhanced wire conductivity (0.02 S/cm) in the hopping regime. Hopping conduction is confirmed by length-, temperature-, and field-dependent transport measurements. These nanoscale transport measurements illuminate the role of molecular length and bond architecture on molecular conductivity and open opportunities for greater understanding of hopping transport in conjugated polymer films.  相似文献   

14.
Self-assembled monolayers (SAMs) obtained from 1-(10-acetylsulfanyldecyl)-4-[2-(4-dimethylaminophenyl)vinyl]quinolinium iodide exhibit asymmetric current-voltage (I-V) characteristics. The rectification may be reversibly switched: it is suppressed when the film is exposed to HCl vapor, the intramolecular charge-transfer axis being inhibited by protonation, but restored when exposed to NH(3). The behavior is intrinsic to the donor-(pi-bridge)-acceptor moiety, and ambiguity in the assignment has been excluded by matching the alkyl tails on the substrate and contacting STM tip to locate the chromophore midway between the electrodes: Au-S-C(10)H(21)//D-pi-A-C(10)H(20)-S-Au. Films contacted by gold tips exhibit rectification ratios of ca. 18 at +/-1 V, whereas those contacted by pentanethiolate (Au-S-C(5)H(11))- and decanethiolate (Au-S-C(10)H(21))-coated tips have corresponding ratios of ca. 11 and 5, respectively. The I-V curves are different, but when adjusted for thickness the current versus electric field dependence is indistinguishable. Seven dyes are reported: SAMs with sterically hindered D-pi-A moieties, in which the donor and acceptor are twisted out of plane, exhibit rectification, whereas those that are planar or have a weak donor-acceptor combination do not.  相似文献   

15.
Herein we report a theoretical study of diode-like behavior of negatively charged (e.g., glass or silica) nanopores at different potential scan rates (1-1000 V·s(-1)). Finite element simulations were used to determine current-voltage characteristics of conical nanopores at various electrolyte concentrations. This study demonstrates that significant changes in rectification behavior can be observed at high scan rates because the mass transport of ionic species appears sluggish on the time scale of the voltage scan. In particular, it explains the influence of the potential scan rate on the nanopore rectifying properties in the cases of classical rectification, rectification inversion, and the "transition" rectification domain where the rectification direction in the nanopore could be modulated according to the applied scan rate.  相似文献   

16.
Fermi's golden rule, a remarkable concept for the transition probability involving continuous states, is applicable to the interfacial electron-transporting efficiency via correlation with the surface density of states (SDOS). Yet, this concept has not been reported to tailor single-molecule junctions where gold is an overwhelmingly popular electrode material due to its superior amenability in regenerating molecular junctions. At the Fermi level, however, the SDOS of gold is small due to its fully filled d-shell. To increase the electron-transport efficiency, herein, gold electrodes are modified by a monolayer of platinum or palladium that bears partially filled d-shells and exhibits significant SDOS at the Fermi energy. An increase by 2–30 fold is found for single-molecule conductance of α,ω-hexanes bridged via common headgroups. The improved junction conductance is attributed to the electrode self-energy which involves a stronger coupling with the molecule and a larger SDOS participated by d-electrons at the electrode-molecule interfaces.  相似文献   

17.
Asymmetrically functionalized single-wall carbon nanotubes (SWNTs) have been prepared by a covalent reaction of an 11-mercaptoundecanol-modified Au surface with oxidized SWNT cylinders. While one end of the tubes is attached to gold substrate via ester groups, the free carboxylic substituents on the other end can be either ionized (CO2-) or esterified (CO2Et), creating a donor-acceptor asymmetric and acceptor-acceptor symmetric SWNT, respectively. Study of the SWNT monolayer conductance in Hg drop junction experiments reveals a pronounced diode-like behavior for donor-SWNT-acceptor junctions, while acceptor-SWNT-acceptor junctions are electrically symmetric.  相似文献   

18.
Self-assembled monolayers (SAMs) formed from the reaction of 1-(10-acetylsulfanyldecyl)-4-[2-(4-dimethylaminonaphthalen-1-yl)-vinyl]-quinolinium iodide (1a) and gold-coated substrates exhibit asymmetric current-voltage (I-V) characteristics with a rectification ratio of 50-150 at +/-1 V. It is the highest to date for a molecular diode, and the improved behavior may be assigned in part to the controlled alignment of the donor-(pi-bridge)-acceptor moieties and in part to steric hindrance, which imposes a nonplanar structure and effectively isolates the molecular orbitals of the donor and acceptor end groups. The molecular origin of the rectification is verified by its suppression upon exposure to HCl vapor, which protonates the dimethylamino group and inhibits the electron-donating properties, with restoration upon exposure to NH3. It is also established by a reduced rectification ratio of ca. 2 at +/-1 V when the cationic D-pi-A+ moieties adopt an antiparallel arrangement in self-assembled films of the derivative, bis-[1-(10-decyl)-4-[2-(4-dimethylaminonaphthalen-1-yl)-vinyl]-quinolinium]-disulfide diiodide (1b), which adsorbs via one of its terminal donors without rupture of the sulfur-sulfur bond: Au/D-pi-A+-C10H20-S-S-C10H20-+A-pi-D (I-)2.  相似文献   

19.
Self-assembled monolayers (SAMs) of arylene-ethynylene oligomers that incorporate electron-accepting 9-fluorenone and 9-[(4-pyridyl)methylene]fluorene units in the backbone exhibit symmetrical current-voltage (I-V) characteristics, but rectifying junctions with current ratios of 20-80 at +/-1 V have been obtained by protonating these wire-like molecules and ionically coupling with anionic donors.  相似文献   

20.
The feasibility of employing azulene-like molecules as a new type of high performance substitution-free molecular rectifier has been explored using NEGF-DFT calculation. The electronic transport behaviors of metal-molecule-metal junctions consisting of various azulene-like dithiol molecules are investigated, which reveals that the azulene-like molecules exhibit high conductance and bias-dependent rectification effects. Among all the substitution-free azulene-like structures, cyclohepta[b]cyclopenta[g]naphthalene exhibits the highest rectification ratio, revealing that the all fused aromatic ring structure and an appropriate separation between the pentagon and heptagon rings are essential for achieving both high conductance and high rectification ratio. The rectification ratio can be increased by substituting the pentagon ring with electron-withdrawing group and/or the heptagon ring with electron donating groups. Further increase of the rectification ratio may also be obtained by lithium adsorption on the pentagon ring. This work reveals that azulene-like molecules may be used as a new class of highly conductive unimolecular rectifiers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号