首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Six luminescent cyclometalated iridium(III)-dipyridoquinoxaline and -dipyridophenazine complexes [Ir(ppy)2(N-N)](PF6) (Hppy = 2-phenylpyridine; N-N = dipyrido[3,2-f:2',3'-h]quinoxaline, dpq (1); 2-n-butylamidodipyrido[3,2-f:2',3'-h]quinoxaline, dpqa (2); 2-((2-biotinamido)ethyl)amidodipyrido[3,2-f:2',3'-h]quinoxaline, dpqB (3); dipyrido[3,2-a:2',3'-c]phenazine, dppz (4); benzo[i]dipyrido[3,2-a:2',3'-c]phenazine, dppn (5); 11-((2-biotinamido)ethyl)amidodipyrido[3,2-a:2',3'-c]phenazine, dppzB (6)) have been designed as luminescent intercalators for DNA and probes for avidin. The structure of complex 4 has been studied by X-ray crystallography. The photophysical and electrochemical properties of the complexes have also been investigated. The binding of these complexes to double-stranded calf thymus DNA and synthetic double-stranded oligonucleotides poly(dA) x poly(dT) and poly(dG) x poly(dC) has been investigated by spectroscopic titrations. The interactions between the two biotin-containing complexes and avidin have been studied by 4'-hydroxyazobenzene-2-carboxylic acid (HABA) assays and emission titrations.  相似文献   

2.
A series of ruthenium(II) complexes possessing ligands with an extended pi system were synthesized and characterized. The complexes are derived from [Ru(bpy)3](2+) (1, bpy = 2,2'-bipyridine) and include [Ru(bpy)2(tpphz)](2+) (2, tpphz = tetrapyrido[3,2-a:2',3'-c:3',2'-h:2',3'-j]phenazine), [Ru(bpy)2(dppx)](2+) (3, dppx = 7,8-dimethyldipyrido[3,2-a:2',3'-c]phenazine), [Ru(bpy)2(dppm2)](2+) (4, dppm2 = 6-methyldipyrido[3,2-a:2',3'-c]phenazine), and [Ru(bpy)2(dppp2)](2+) (5, dppp2 = pyrido[2',3':5,6]pyrazino[2,3-f][1,10]phenanthroline). The excited-state properties of these complexes, including their DNA "light-switch" behavior, were compared to those of [Ru(bpy)2(dppz)](2+) (6, dppz = dipyrido[3,2-a:2',3'-c]phenazine). Whereas 2, 3, and 4 can be classified as DNA light-switch complexes, 5 exhibits negligible luminescence enhancement in the presence of DNA. Because relative viscosity experiments show that 2-6 bind to DNA by intercalation, their electronic absorption and emission spectra, electrochemistry, and temperature dependence of the luminescence were used to explain the observed differences. The small energy gap between the lowest-lying dark excited state and the bright state in 2-4 and 6 is related to the ability of these complexes to exhibit DNA light-switch behavior, whereas the large energy gap in 5 precludes the emission enhancement in the presence of DNA. The effect of the energy gap among low-lying states on the photophysical properties of 1-6 is discussed. In addition, DFT and TD-DFT calculations support the conclusions from the experiments.  相似文献   

3.
Synthetic methods toward ruthenium(II) complexes incorporating the benzo[i]dipyrido[3,2-a:2',3'-c]phenazine-11,16-quinone ligand, qdppn, are reported. In several cases, it was found that complexes containing coordinated benzo[i]dipyrido[3,2-a:2',3'-c]phenazine, dppn, could be chemically or photochemically oxidized to their qdppn analogues. Since this method was not possible in all the cases, a new, higher yielding, convenient synthesis of qdppn was developed. The crystal structure of the complex [Ru(phen)(2)(qppn)](PF(6))(2) (phen = 1,10-phenanthroline) which was synthesized from free qdppn reveals that a combination of π-π stacking between coordinated phen and qdppn units, as well as anion-ligand hydrogen bonding, define large hexagonal channels which are occupied by anions and solvent molecules. Electrochemical and photophysical studies reveal that the new qdppn-based complexes are not luminescent and, in contrast to their dppn analogues, they are also poor singlet oxygen sensitizers. Time-resolved studies and density functional theory (DFT) calculations indicate that optical properties of the new complexes are due to a short-lived charge separated state involving the quinone moiety of qdppn. The DNA binding properties of the new complexes have also been investigated. It was found that they are intercalators, displaying binding affinities which are comparable to their dppn analogues.  相似文献   

4.
The interaction with DNA of the platinum(II) square planar complexes [Pt(N-N)(py)(2)](2+) (N-N = 1,10-phenanthroline (phen), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq), dipyrido[3,2-a:2',3'-c]phenazine (dppz), benzodipyrido[b:3,2-h:2'3'-f]phenazine (bdppz)) has been investigated by means of absorption, circular and linear dichroism spectroscopy, DNA melting, and viscosity. In the presence of excess [DNA] all the complexes intercalate to the double helix. For those with the most extended phenanthrolines the binding mode depends on the [DNA]/[complex] ratio (q); at low q values the substances bind externally to DNA probably self-aggregating along the double helix. When the DNA concentration is large enough, the aggregate breaks up and the complex intercalates within the nucleobases. The complexes self-aggregate, without added DNA, in the presence of a large salt concentration.  相似文献   

5.
Molecular modeling methods have been applied to the structural characterization of the interaction between chiral metal complexes [Co(phen)2dppz]3 (where phen = 1, 10-phenanthroline, dppz = dipyrido[3,2-a: 2', 3'-c]phenazine) and the oligonucleotide (B-DNA fragment). The natures of two kinds of the binding modes, which are currently intense controversy, have been explored. Barton proposed that there is enantio-selective DMA binding by the octahedral complexes and intercalative access by these complexes from the major groove; but Norden suggested that both enantiomers bind extremely strongly to DNA from the minor groove without any noticeable enantio-selectivity. Our results support and extend structural models based upon Norden's studies, and conflict with Barton's model.  相似文献   

6.
Iron(III) complexes [FeL(B)] (1-5) of a tetradentate trianionic phenolate-based ligand (L) and modified dipyridophenazine bases (B), namely, dipyrido-6,7,8,9-tetrahydrophenazine (dpqC in 1), dipyrido[3,2-a:2',3'-c]phenazine-2-carboxylic acid (dppzc in 2), dipyrido[3,2-a:2',3'-c]phenazine-11-sulfonic acid (dppzs in 3), 7-aminodipyrido[3,2-a:2',3'-c]phenazine (dppza in 4) and benzo[i]dipyrido[3,2-a:2',3'-c]phenazine (dppn in 5), have been synthesized and their photocytotoxic properties studied along with their dipyridophenazine analogue (6). The complexes have a five electron paramagnetic iron(III) center, and the Fe(III)/Fe(II) redox couple appears at about -0.69 V versus SCE in DMF-0.1 M TBAP. The physicochemical data also suggest that the complexes possess similar structural features as that of its parent complex [FeL(dppz)] with FeO3N3 coordination in a distorted octahedral geometry. The DNA-complex and protein-complex interaction studies have revealed that the complexes interact favorably with the biomolecules, the degree of which depends on the nature of the substituents present on the dipyridophenazine ring. Photocleavage of pUC19 DNA by the complexes has been studied using visible light of 476, 530, and 647 nm wavelengths. Mechanistic investigations with inhibitors show formation of HO(?) radicals via a photoredox pathway. Photocytotoxicity study of the complexes in HeLa cells has shown that the dppn complex (5) is highly active in causing cell death in visible light with sub micromolar IC(50) value. The effect of substitutions and the planarity of the phenazine moiety on the cellular uptake are quantified by determining the total cellular iron content using the inductively coupled plasma-optical emission spectrometry (ICP-OES) technique. The cellular uptake increases marginally with an increase in the hydrophobicity of the dipyridophenazine ligands whereas complex 3 with dppzs shows very high uptake. Insights into the cell death mechanism by the dppn complex 5, obtained through DAPI nuclear staining in HeLa cells, reveal a rapid programmed cell death mechanism following photoactivation of complex 5 with visible light. The effect of substituent on the DNA photocleavage activity of the complexes has been rationalized from the theoretical studies.  相似文献   

7.
The ligands 11-bromodipyrido[3,2-a:2',3'-c]phenazine and ethyl dipyrido[3,2-a:2',3'-c]phenazine-11-carboxylate have been prepared and coordinated to ruthenium(II), rhenium(I), and copper(I) metal centers. The electronic effects of substitution of dipyrido[2,3-a:3',2'-c]phenazine (dppz) have been investigated by spectroscopy and electrochemistry, and some photophysical properties have been studied. The crystal structures of [Re(L)(CO)(3)Cl] (L = ethyl dipyrido[3,2-a:2',3'-c]phenazine-11-carboxylate or 11-bromodipyrido[3,2-a:2',3'-c]phenazine) are presented. Density functional theory calculations on the complexes show only small deviations in bond lengths and angles (most bonds within 0.02 Angstroms, most angles within 2 degrees) from the crystallographic data. Furthermore, the vibrational spectra of the strongest Raman and IR bands are predicted to within an average 6 cm(-1) for the complexes [Re(L)(CO)(3)Cl] and [Cu(L)(triphenylphosphine)(2)]BF(4) (in the 1000-1700 cm(-1) region). Spectroscopic and electrochemical evidence suggest that reduction of the complex causes structural changes across the entire dppz ligand. This is unusual as dppz-based ligands typically have electrochemical properties that suggest charge localization with reduction on the phenazine portion of the ligand. The excited-state lifetimes of the complexes have been measured, and they range from ca. 200 ns for the [Ru(L)(2,2'-bipyridine)(2)](PF(6))(2) complexes to over 2 mus for [Cu(11-bromodipyrido[3,2-a:2',3'-c]phenazine)(PPh(3))(2)](BF(4)) at room temperature. The emission spectra suggest that the unusually long-lived excited states of the copper complexes result from metal-to-ligand charge transfer (MLCT) transitions as they are completely quenched in methanol. Electroluminescent films may be fabricated from these compounds; they show MLCT state emission even at low doping levels [<0.1% by weight in poly(vinylcarbazole) polymer matrix].  相似文献   

8.
We have synthesized a fully conjugated aromatic bridging ligand, tetrapyrido[3,2-a:2',3'-c:3',2'-h:2' ",3'"-j]phenazine (tpphz), and a dinuclear ruthenium complex using Hematin as a biocatalyst.  相似文献   

9.
杨频  熊振海 《化学学报》2001,59(7):1038-1044
针对国际上对金属配合物同DNA间作用机量的争议,采用分子模拟手段在MM2力场下,搭建并优化了手性金属配合物△,Λ-[Co(phen)2tpphz]^3+与B-DNA[d(GTCGATCGAC)2]的模型,继而对其相互作用进行了模拟,得出的结论是:对所采用的B-DNA片断,该金属配合物有明显的立体选择性△型配合物从小沟插入占明显优势,而且,总体来看,从AT区插入更易进行。  相似文献   

10.
Amino-substituted dipyrido[3,2-a:2',3'-c]phenazine (L(1)) and dimethyl-dipyrido[3,2-a:2',3'-c]phenazine (L(2)) have been investigated as: (i) chromophores in cyclen-based ligands for lanthanide(iii) ions; (ii) ancillary co-ligands in cyclometalated iridium(iii) complexes; (iii) bridging, linker units in covalently linked, water-soluble bimetallic lanthanide(iii) iridium(iii) hybrid complexes. The dipyrido[3,2-a:2',3'-c]phenazine (dppz) derivatives can act as sensitising chromophores (λ(ex) 400 nm) for Yb(iii), resulting in characteristic near-IR emission at 950-1050 nm. The incorporation of dppz-type ligands into cyclometalated Ir(III) complexes of the general type [Ir(epqc)(2)(L(n))](PF(6)) (where epqc = ethylphenylquinoline carboxylate) gave luminescent species with solvent-sensitive emission properties. Steady state and time-resolved luminescence measurements on the water-soluble d-f hybrid species showed that Yb(III) can be sensitised using visible light.  相似文献   

11.
A series of mixed ligand ruthenium(II) complexes [Ru(Hdpa)2(diimine)](ClO4)2, 1-5 where Hdpa is 2,2'-dipyridylamine and diimine is 1,10-phenanthroline (phen) and a modified/extended 1,10-phenanthroline such as, 5,6-dimethyl-1,10-phenanthroline (5,6-dmp), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq), 5-methyldipyrido[3,2-d:2',3'-f]quinoxaline (mdpq) and dipyrido[3,2-a:2',3'-c]phenazine (dppz) have been isolated and characterized by analytical and spectral methods. The complex [Ru(Hdpa)2(phen)](PF6)2 1 has been structurally characterized and the coordination geometry around Ru(II) in it is described as distorted octahedral. 1H NMR spectral data reveal that 1-5 should have a C2 symmetry lying on the diimine plane due to the rapid flapping of the coordinated Hdpa ligands. The interaction of the complexes with calf thymus (CT) DNA has been explored by using absorption and emission spectral and viscometry and electrochemical techniques and the mode of DNA binding of the complexes has been proposed. The DNA binding affinity of the complexes decreases with decrease in number of planar aromatic rings in the co-ligand supporting the intercalation of the diimine co-ligands in between the DNA base pairs. Circular dichroic spectral studies reveal that the complexes 3-5 exhibit induced circular dichroism upon binding to CT DNA. Interestingly, upon interaction with CT DNA all the complexes show an increase in anodic current in the cyclic voltammograms suggesting that they are involved in electrocatalytic guanine oxidation. Interestingly, of all the complexes, only 5 alters the DNA superhelicity upon binding with supercoiled pBR322 DNA, which is consistent with its higher DNA binding affinity. Further, the cytotoxicities of the complexes against human cervical epidermoid carcinoma cell line (ME180) have been examined. Interestingly, 5 exhibits a cytotoxicity against ME180 higher than other complexes with potency approximately 8 times more than cisplatin for 24 h incubation but 4 times lower than cisplatin for 48 h incubation.  相似文献   

12.
Four novel dinuclear RuII compounds and, for comparison purposes, two corresponding mononuclear complexes containing the PHEHAT or TPAC ligand (PHEHAT=1,10-phenanthrolino[5,6-b]-1,4,5,8,9,12-hexaazatriphenylene and TPAC=tetrapyrido[3,2-a:2',3'-c:3' ',2' '-h:2' ',3' '-j]acridine) have been synthesized and characterized. Conclusions on the effects of dinucleation of these two bridging ligands can be drawn only for the compounds for which the results demonstrate that the bridging ligand is involved in the first electrochemical reduction and lowest emission energy. The behavior of these complexes, which is not always predictable, is discussed, and the differences are highlighted in this work. Interestingly, all of the compounds are luminescent except one dinuclear species, [(phen)2Ru-mu-PHEHAT-Ru(TAP)2]4+, which does not luminesce in MeCN and BuCN at room temperature.  相似文献   

13.
Quantum-chemical methods are applied to study the nature of the excited states relevant in the photophysical processes (absorption and emission) of a series of polyazaaromatic-ligand-based ruthenium(II) complexes. The electronic and optical properties of the free polyazaaromatic ligands and their corresponding ruthenium(II) complexes are determined on the basis of correlated Hartree-Fock semiempirical approaches. While the emission of complexes containing small-size ligands, such as 1,10-phenanthroline or 2,2'-bipyridine, arises from a manifold of metal-to-ligand charge-transfer triplet states ((3)MLCTs), an additional ligand-centered triplet state ((3)L) is identified in the triplet manifold of complexes containing a pi-extended ligand such as dipyrido[3,2-a:2',3'-c]phenazine, tetrapyrido[3,2-a:2',3'-c:3',2'-h:2',3'-j]phenazine, and 1,10-phenanthrolino[5,6-b]-1,4,5,8,9,12-hexaazatriphenylene. Recent experimental data are interpreted in light of these theoretical results; namely, the origin for the abnormal solvent- and temperature-dependent emission measured in pi-extended Ru complexes is revisited.  相似文献   

14.
Ternary copper(II) complexes [Cu(l-met)B(Solv)](ClO4) (1-4), where B is a N,N-donor heterocyclic base like 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3) and dipyrido[3,2-a:2'],3'-c]phenazene (dppz, 4), are prepared and their DNA binding and photo-induced DNA cleavage activity studied (L-Hmet =L-methionine). Complex 2, structurally characterized by X-ray crystallography, shows a square pyramidal (4 + 1) coordination geometry in which the N,O-donor L-methionine and N,N-donor heterocyclic base bind at the basal plane and a solvent molecule is coordinated at the axial site. The complexes display a d-d band at approximately 600 nm in DMF and exhibit a cyclic voltammetric response due to the Cu(II)/Cu(I) couple near -0.1 V in DMF-Tris-HCl buffer. The complexes display significant binding propensity to the calf thymus DNA in the order: 4(dppz) > 3(dpq) > 2(phen> 1(bpy). Control cleavage experiments using pUC19 supercoiled DNA and distamycin suggest major groove binding for the dppz and minor groove binding for the other complexes. Complexes 2-4 show efficient DNA cleavage activity on UV (365 nm) or red light (632.8 nm) irradiation via a mechanistic pathway involving formation of singlet oxygen as the reactive species. The DNA cleavage activity of the dpq complex is found to be significantly more than its dppz and phen analogues.  相似文献   

15.
新型双核配合物的形成及荧光性质研究   总被引:1,自引:0,他引:1  
利用光谱学方法研究了[Ru(bpy)2TPPHZ]2+(TPPHZ=四吡啶[3,2-a: 2',3'-c: 3",2"-h: 2'",3'"-j]吩嗪)和[Ru(bpy)2ODHIP]2+(ODHIP=3,4-二羟基-咪唑并[4,5-f][1,10]邻菲咯啉)与Ni2+的配位情况及配位后的荧光性质变化, 探讨了配合物与Ni2+配位形成双核配合物后与DNA的作用机制变化. 结果表明, [Ru(bpy)2TPPHZ]2+和[Ru(bpy)2ODHIP]2+均可与Ni2+配位, 形成双核配合物[Ru(bpy)2(TPPHZ)Ni]4+和[Ru(bpy)2(ODHIP)Ni]4+, 配合物的荧光强度随着Ni2+浓度的增加而减弱. 与DNA作用后, 配合物仍可与Ni2+配位形成双核配合物, [Ru(bpy)2(TPPHZ)Ni]4+的荧光几乎完全消失, 同时配合物与DNA保持插入模式作用, 而配合物[Ru(bpy)2(ODHIP)Ni]4+与DNA的作用则由沟面结合改为插入结合, 同时配合物的荧光减弱.  相似文献   

16.
A series of platinum(II) complexes containing dipyridophenazine (dppz) and C-deprotonated 2-phenylpyridine (N-CH) ligands were prepared and assayed for G-quadruplex DNA binding activities. [PtII(dppz-COOH)(N-C)]CF3SO3 (1; dppz-COOH = 11-carboxydipyrido[3,2-a:2',3'-c]phenazine) binds G-quadruplex DNA through an external end-stacking mode with a binding affinity of approximately 10(7) dm3 mol-1. G-quadruplex DNA binding is accompanied by up to a 293-fold increase in the intensity of photoluminescence at lambdamax = 512 nm. Using a biotinylated-primer extension telomerase assay, 1 was shown to be an effective inhibitor of human telomerase in vitro, with a telIC50 value of 760 nM.  相似文献   

17.
Olmon ED  Hill MG  Barton JK 《Inorganic chemistry》2011,50(23):12034-12044
Metallointercalating photooxidants interact intimately with the base stack of double-stranded DNA and exhibit rich photophysical and electrochemical properties, making them ideal probes for the study of DNA-mediated charge transport (CT). The complexes [Rh(phi)(2)(bpy')](3+) (phi = 9,10-phenanthrenequinone diimine; bpy' = 4-methyl-4'-(butyric acid)-2,2'-bipyridine), [Ir(ppy)(2)(dppz')](+) (ppy = 2-phenylpyridine; dppz' = 6-(dipyrido[3,2-a:2',3'-c]phenazin-11-yl)hex-5-ynoic acid), and [Re(CO)(3)(dppz)(py')](+) (dppz = dipyrido[2,3-a:2',3'-c]phenazine; py' = 3-(pyridin-4-yl)-propanoic acid) were each covalently tethered to DNA to compare their photooxidation efficiencies. Biochemical studies show that upon irradiation, the three complexes oxidize guanine by long-range DNA-mediated CT with the efficiency: Rh > Re > Ir. Comparison of spectra obtained by spectroelectrochemistry after bulk reduction of the free metal complexes with those obtained by transient absorption (TA) spectroscopy of the conjugates suggests that the reduced metal states form following excitation of the conjugates at 355 nm. Electrochemical experiments and kinetic analysis of the TA decays indicate that the thermodynamic driving force for CT, variations in the efficiency of back electron transfer, and coupling to DNA are the primary factors responsible for the trend observed in the guanine oxidation yields of the three complexes.  相似文献   

18.
The synthesis and characterization of a ditopic bridging ligand, 9,12,21,22-tetraazatetrapyrido[3,2-a:2',3'-c:3″2″-m:2',3'-o]pentaphene (tatppα) and its dinuclear ruthenium complex, [(phen)(2)Ru(tatppα)Ru(phen)(2)][PF(6)](4) (1(4+)), are described. The tatppα ligand is structurally very similar to 9,10,20,33-tetraazatetrapyrido[3,2-a:2',3'-c:3″,2″-l:2',3'-n]pentacene (tatppβ), except that, instead of a linear tetraazapentacene backbone, tatppα has an ortho (or α) substitution pattern about the central benzene ring, leading to a 120° bend. Complex 1(4+) shows tatppα-based reductions at -0.73 and -1.14 V vs Ag/AgCl/saturated KCl and has an absorption spectrum showing the typical Ru(II) dπ → phen-like π* metal-to-ligand charge-transfer transition centered at ~450 nm. In acetonitrile, visible-light irradiation of 1(4+) in the presence of triethylamine leads to two sequential changes in the absorption spectra, which are assigned to the formation of the one- and two-electron-reduced species, with the electrons stored on the tatppα ligand. These assignments were made by comparison of the spectral changes observed in 1(4+) upon stoichiometric chemical reduction with cobaltocene and by spectroelectrochemical analysis. Significantly, DFT calculations are very predictive of the optical and reductive behavior of the tatppα complex relative to the tatppβ complexes and show that modeling is a useful tool for ligand design. The chemical reactivity and differential reflectance spectroelectrochemical data reveal that the reductions are accompanied by radical dimerization of the tatppα ligand to species such as σ-{1}(2)(6+), which is only slowly reversible upon exposure to air and may limit the complexe's 1(4+) utility for driving photochemical H(2) production.  相似文献   

19.
Ternary copper(II) complexes [Cu(l-lys)B(ClO4)](ClO4)(1-4), where B is a heterocyclic base, viz. 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3) and dipyrido[3,2-a:2',3'-c]phenazene (dppz, 4), are prepared and their DNA binding and photo-induced DNA cleavage activity studied (l-lys =l-lysine). Complex 2, structurally characterized by X-ray crystallography, shows a square-pyramidal (4 + 1) coordination geometry in which the N,O-donor l-lysine and N,N-donor heterocyclic base bind at the basal plane and the perchlorate ligand is bonded at the elongated axial site. The crystal structure shows the presence of a pendant cationic amine moiety -(CH2)4NH3+ of l-lysine. The one-electron paramagnetic complexes display a d-d band in the range of 598-762 nm in DMF and exhibit cyclic voltammetric response due to Cu(II)/Cu(I) couple in the range of 0.07 to -0.20 V vs. SCE in DMF-Tris-HCl buffer. The complexes having phenanthroline bases display good binding propensity to the calf thymus DNA giving an order: 4 (dppz) > 3 (dpq) > 2 (phen)> 1 (bpy). Control cleavage experiments using pUC19 supercoiled DNA and distamycin suggest major groove binding for the dppz and minor groove binding for the other complexes. Complexes 2-4 show efficient DNA cleavage activity on UV (365 nm) or visible light (694 nm ruby laser) irradiation via a mechanistic pathway involving formation of singlet oxygen as the reactive species. The amino acid l-lysine bound to the metal shows photosensitizing effect at red light, while the heterocyclic bases are primarily DNA groove binders. The dpq and dppz ligands display red light-induced photosensitizing effects in copper-bound form.  相似文献   

20.
A new monometallic complex [Co(phen)2tpphz]3+ (where tpphz is tetrapyrido [3,2-a: 2',3'-c: 3″,2″-h: 2'″,3'″-j] phenazine) was synthesized by the reaction of 5,6-diamino-1,10-phenanthroline with [Co(phen)2(phendione)]3+. It was characterized by elemental analysis, molar conductivity, IR, 1H NMR, ultraviolet and fluorescence spectroscopy. The interaction of the complex with DNA was also investigated. The complex shows the absorption hypochromicity, fluorescence enhancement, the specific viscosity increased when bound to calf thymus DNA. The cyclic voltammetry (CV) measurement showed a change in peak current with the addition of DNA. All the results provide the support for the intercalative binding mode of the mononuclear complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号