首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Guohua Liu  Deming Liu 《Optik》2009,120(1):24-28
A theoretical analysis of stimulated Brillouin scattering (SBS) in linear cavity Yb3+-doped double-clad fiber lasers is presented by solving the steady-state rate equations with the SBS. The effects of cavity length, fiber core diameter, input mirror reflectivity at Stokes wavelength, Yb3+ concentration and laser linewidth on the SBS are discussed. Numerical results show that the SBS threshold power can be improved by shortening the cavity length, using large mode area fiber, reducing the input mirror reflectivity at Stokes wavelength, lowering the Yb3+ concentration and broadening the laser linewidth, and the influence of the laser linewidth on the SBS threshold power is more noticeable than other system parameters.  相似文献   

2.
In order to improve the performance of the double-clad fiber laser, the optimum laser length needs to be estimated prior to the experiment. Previous expressions for the optimum length of fiber laser have been established under some assumptions, such as the output power without laser scattering loss and the pump power without reflection in the output-end. In this work, the issue of optimum laser length has been analyzed theoretically based on the strongly pumped fiber laser model. An extended expression for the optimum length of the linear cavity Yb3+-doped double-clad fiber laser is obtained. The respective effects of the laser scattering loss, the pump power, the Yb3+ dopant concentration, and the pump reflection on the optimum laser length are identified.  相似文献   

3.
讨论了自启动被动锁模掺Yb3+光纤环形激光器产生短脉冲的机理,并研制出全光纤结构超短脉冲掺Yb3+光纤环形激光器.采用两个976nm半导体激光器级联抽运作为抽运源,高掺杂浓度掺Yb3+光纤作为增益介质,利用光纤的非线性偏振旋转效应,得到自启动、十分稳定的ps量级锁模光脉冲.激光器锁模阈值功率260mW,输出功率25mW,锁模光脉冲中心波长1056nm,3dB带宽11.7nm,重复频率20MHz.与其他结构光纤激光器相比,这种全光纤结构具有更高的效率和更好的稳定性. 关键词: 环形光纤激光器 3+光纤')" href="#">高掺杂浓度掺Yb3+光纤 自启动 被动锁模  相似文献   

4.
We propose and demonstrate an all-fiber multi-wavelength switchable double-clad Yb3+-doped fiber laser based on the reflectivity cavity control by induced bend loss. The wavelength switching is realized by a variable reflecting mirror that employs a cascaded array of three high reflection (>99%) fiber Bragg gratings at 1064, 1080 and 1096 nm, with a bending controller inserted between each grating. The order of the Bragg gratings is decided according to the gain profile of the Yb3+-doped fiber and the induced bending loss allows us to select the Bragg-wavelength laser operation. The laser is capable of switching continuously from one wavelength to another, and slope efficiencies over 50% are obtained at each wavelength.  相似文献   

5.
A numerical model of the fiber Bragg grating (FBG)-based actively Q-switched double-clad fiber laser is presented in this paper. Based on numerical simulations, the influence of FBG on Q-switched pulse performance of Yb3+-doped double-clad fiber laser is studied, the pulse characteristics are discussed and analyzed using different FBG profiles, and further investigation is conducted to study the pulse characteristics of the fiber lasers under varying Q-switching conditions, including repetition rates, apodization profiles of FBG, peak reflectivity of the tunable FBG, cavity length and pump power.  相似文献   

6.
We investigated the properties of continuous wave (CW) Yb3+-doped double-clad fiber lasers (DCFLs) with linear-cavities theoretically and numerically using the rate equations. Under steady-state conditions, a new approximate analytical solution for CW Yb3+-doped double-clad fiber lasers (DCFLs) with consideration of the scattering losses were deduced. Good agreement between the proposed solution and the numerical simulation was demonstrated. Compared with the known approximate solutions published in the literature, the proposed solution has a briefer expression, higher accuracy and wider scope of application, which extends the applicable range of the analytical result to low reflective feedback mirror configurations. The solution provides a clear physical understanding of the optimal design of the CW Yb3+-doped DCFLs and can be applied to different pump and output configurations. Using the proposed solution, the optimal design of the CW Yb3+-doped DCFLs was discussed. If cavity reflectivities are given in advance, the optimal fiber length is found to be independent of the pump power. When the pump power and reflectivity of the feedback end are known in advance, the results show that the optimal fiber length increases and the optimal reflectivity of output mirror decreases with increase in pump power. Furthermore, when the feedback mirror is highly reflective, there exists a certain tolerance of the optimal parameters, in which the conversion efficiency decreases only slightly. But the conversion efficiency is sensitive to reflectivity of output mirror if feedback mirror has low reflectivity.  相似文献   

7.
An exact analytical expression of the threshold pump power for the one-end-pumped Yb3+-doped gain-guided and index-antiguided (GG–IAG) fiber laser has been obtained by solving the improved rate equations (REs) with the additional leakage losses. The effects of Yb3+ concentration, fiber length, core radius and mirror reflectivity on the threshold pump power are discussed. After optimizing, the results show that the laser threshold of GG–IAG fiber laser can be greatly reduced while maintaining single mode oscillation. Compared to the numerical methods, the analytical expression has easy calculation and distinct results.  相似文献   

8.
A novel shooting method with excellent simple control strategy is developed for solving the failure to convergence of the traditional shooting methods themselves in fiber lasers model. Compared with the published literature, the novel shooting method provides a clear physical understanding method for getting the threshold pump power and the exact results with given random functions in Yb3+-doped fiber lasers and Er3+-doped fiber lasers. Then, the results in Er3+-doped fiber lasers and Yb3+-doped fiber lasers demonstrate that the solutions using the novel shooting method has high accuracy of 10−8 W with several iteration steps, which have extended the applicable range of the end-pumped power even lower than 1 mW pump power. Furthermore, compared with 1480 nm pump for the threshold and slope efficiencies of the Er3+-doped fiber lasers, 978 nm fiber lasers can extend wider scope of application and be pump source in the coming future. Finally, the lower threshold and higher slope efficiency at 975 nm than those of 910 nm pump in Yb3+-doped fiber lasers, 975 nm pump laser provides for broad band excellent cladding pump source.  相似文献   

9.
对强泵浦下线形腔掺Yb3+双包层光纤激光器输出特性进行了理论和实验研究。通过数值模拟,分析了泵浦光及激光在光纤中的分布、输出功率与泵浦功率的关系、光纤长度及腔镜反射率对激光输出功率的影响。在实验中,利用D型掺Yb3+双包层光纤获得了输出功率10 6W的光纤激光输出,斜率效率达86%。测量了在不同输出耦合条件下的输出功率、阈值泵浦功率和斜率效率,理论分析与实验结果基本一致,为进一步提高光纤激光器功率提供了理论和实验依据。  相似文献   

10.
A novel all fiber cavity Yb3+-doped double-clad fiber laser (DCFL) based on two double-clad fiber (DCF)Bragg grating is presented. The fiber Bragg gratings (FBGs) as the input and output mirrors have been formed in Yb3+-doped DCF with the phase-mask method, and their reflectivities are 99% and 22%,respectively. When the input pump power is 417 mW, the maximum output power is 144 mW with linewidth <0.1 nm at the wavelength of 1.057μm, over 40-dB signal-to-noise ratio (SNR), and 50.8% slope efficiency.  相似文献   

11.
从包层泵浦光纤激光器的速率方程理论出发,推导出了稳态下包层泵浦光纤激光器的输出功率,斜率效率和阈值功率的解析表达式,进行了数值模拟,对模拟结果进行了简单分析。并进行了实验研究,实验采用中心波长为975nm的激光二级管单端泵浦内包层形状为D型的包层光纤,利用二相色镜和光纤端面反馈构成谐振腔,采用了两套不同的准直耦合系统,得到的最高输出功率为24W,总的光-光转换效率为53.5%。  相似文献   

12.
A pulsed master-oscillator power fiber amplifier (MOPFA) system based on Yb3+-doped large mode area (LMA) double-clad optical fiber was developed. The system generated pulses of changeable duration ranging from about 8.5 to 250.0 ns at the repetition rate of up to 500 kHz. The laser system emitted up to 22 W of average output power at the wavelength of 1064 nm.  相似文献   

13.
The one-end-pumped Yb3+-doped gain guided and index antiguided (GG+IAG) fiber laser is analyzed with a rate equation model. By solving propagation rate equations, the pump and signal, the gain coefficients and other characteristics are obtained. Computation results show that a properly designed Yb3+-doped GG+IAG fiber laser can provide a large-mode laser with a short length. The most important issue addressed is the way of controlling the fiber laser length.  相似文献   

14.
双包层光纤光栅选频双包层光纤激光器   总被引:7,自引:2,他引:5  
双包层光纤激光器中多采用法布里珀罗(F-P)线形腔结构,谐振腔为一只二向色镜和光纤端面菲涅耳反射镜(反射率约为4%)构成,这属于一种有缺陷的腔结构,其稳定性不好,产生激光的波长很难得到有效控制,后腔镜不能精确选择激光器的输出波长,激光器的输出谱线较宽。在某些对激光波长有明确要求的应用中,该结构会受到限制。采用布拉格光纤光栅作腔镜,利用其窄带滤波特性,可以得到窄线宽的激光输出,目前报道的作为腔镜的布拉格光纤光栅为在单包层光敏光纤上制作而成,然后分别将不同反射率的光纤光栅与双包层增益光纤熔接,这给腔镜与双包层光纤之间带来很大的耦合损耗,影响了激光器的功率输出。该文报道了用相位掩模法在双包层光纤芯上写入了布拉格光纤光栅,并把此光纤光栅做为后腔镜.对长度为10m、20m的D形掺Yb^3 双包层光纤激光器进行实验研究,在1058nm附近得到稳定的窄线宽激光输出,3dB带宽为0.329nm。激光器最大输出功率为570mW。最后对实验结果进行了理论分析。  相似文献   

15.
对线形腔LD泵浦掺镱的双包层光纤激光器进行研究,通过数值模拟,分析了不同泵浦方式下的泵浦光、激光输出功率和增益特性在光纤中的分布。结果表明,单端后向泵浦输出功率率较高,对于小功率光纤激光器则是最佳选择。进一步又研究了单端后向对称泵浦输出功率与光纤长度及腔镜反射率的影响,为提高光纤激光器的输出功率提供了理论和实验依据。  相似文献   

16.
刘华刚  黄见洪  翁文  李锦辉  郑晖  戴殊韬  赵显  王继扬  林文雄 《物理学报》2012,61(15):154210-154210
以芯径为30 μm的掺Yb3+双包层光纤为增益介质, 利用非线性偏振旋转技术以及光栅-小孔结构组成的光谱滤波器提供有效的振幅调制, 实现了稳定的全正色散耗散孤子锁模运转. 激光器直接输出重复频率为76.6 MHz、平均功率达6.3 W的超短脉冲, 单脉冲能量可达82 nJ. 直接输出脉冲宽度为1.33 ps, 经腔外压缩后的宽度为377 fs. 通过调节光栅角度还实现了输出脉冲中心波长在1025—1078 nm范围内的调谐.  相似文献   

17.
We have demonstrated a novel tunable linear cavity Er3+/Yb3+ co-doped fiber laser, which utilizes amplified spontaneous emission as a secondary pump source so that it can operate in L-band. The tuning wavelength range can be up to 34 nm, from 1588.6 to 1622.6 nm, and the output power excursion of the laser at different wavelengths can be less than 0.4 dB by using a two sections of high-birefringence fiber loop mirror as the wavelength filter. The high output power of 200 mW is realized by using the cladding-pump.  相似文献   

18.
Rare-earth doped fiber lasers are now considered suitable sources for the 1.0-, 1.5-, and even 2.0-μm regions in a relatively large number of applications. In particular, Yb3+-doped fiber lasers have received strong interest due to its high quantum efficiency, broad tunability, and available high output power. In this work, we present results on a newly developed code for the simulation of the critical power that is required when designing double-clad high-power Yb3+-doped fiber lasers, which are based on novel inner-clad structures. From our results, we can also estimate σep, σel, σap, and σal for the aforementioned free-running laser cavities. Finally, we will formulate our predictions for feasible fiber laser cross sections.  相似文献   

19.
In this paper, continuous wave Yb3+-doped double-clad fiber lasers (DCFLs) with linear-cavity are investigated theoretically and numerically using the rate equations. Under the steady state conditions, the simplified analytic solutions of Yb3+-doped DCFLs under considering the scattering loss are deduced in the strongly pump condition. Compared with the known analytic solutions in published literatures, our analytic solutions are more accurate, especially, at higher reflectivity of output mirror. In addition, a fast and stable algorithm based on the Newton-Raphson method is proposed to simulate numerically Yb3+-doped DCFLs. The results by simplified analytic solutions are in good agreement with those by the numerical simulation. Moreover, we have performed the optimization of an Yb3+-doped DCFL using the simplified analytic solutions and the numerical simulations, respectively.  相似文献   

20.
Y. Zhang  T. Jing 《Laser Physics》2009,19(12):2197-2199
The diode laser (LD) clad-pumped 1947.6 nm continuous wave (CW) Tm3+-doped fiber amplifier is reported using the master oscillation power amplifier (MOPA) method. The injected seed laser is provided by an all-fiber LD-clad-pumped Tm3+-doped single-mode fiber laser, which has a nearly 2.4 W maximal output power and 0.1 nm ultra-narrow linewidth based on the intracore reflection FBG. Using the 25/400 μm double-clad LMA Tm3+-doped fiber as the gain fiber, the output maximal output power is 30.6 W from the fiber amplifier, with a slope efficiency of 39.1% respected to the LD total output power. A high power multi-mode fiber combiner is used to couple high power LD light into the gain fiber. The output wavelength is also located at 1947.6 nm, with the slightly expanded laser linewidth of 0.2 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号