首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial release from masking (SRM) was measured in groups of children with bilateral cochlear implants (BiCIs, average ages 6.0 and 7.9 yr) and with normal hearing (NH, average ages 5.0 and 7.8 yr). Speech reception thresholds (SRTs) were measured for target speech in front (0°), and interferers in front, distributed asymmetrically toward the right (+90°/+90°) or distributed symmetrically toward the right and left (+90°/-90°). In the asymmetrical condition both monaural "better ear" and binaural cues are available. In the symmetrical condition, listeners rely heavily on binaural cues to segregate sources. SRM was computed as the difference between SRTs in the front condition and SRTs in either the asymmetrical or symmetrical conditions. Results showed that asymmetrical SRM was smaller in BiCI users than NH children. Furthermore, NH children showed symmetrical SRM, suggesting they are able to use binaural cues for source segregation, whereas children with BiCIs had minimal or absent symmetrical SRM. These findings suggest that children who receive BiCIs can segregate speech from noise under conditions that maximize monaural better ear cues. Limitations in the CI devices likely play an important role in limiting SRM. Thus, improvement in spatial hearing abilities in children with BiCIs may require binaural processing strategies.  相似文献   

2.
The "cocktail party problem" was studied using virtual stimuli whose spatial locations were generated using anechoic head-related impulse responses from the AUDIS database [Blauert et al., J. Acoust. Soc. Am. 103, 3082 (1998)]. Speech reception thresholds (SRTs) were measured for Harvard IEEE sentences presented from the front in the presence of one, two, or three interfering sources. Four types of interferer were used: (1) other sentences spoken by the same talker, (2) time-reversed sentences of the same talker, (3) speech-spectrum shaped noise, and (4) speech-spectrum shaped noise, modulated by the temporal envelope of the sentences. Each interferer was matched to the spectrum of the target talker. Interferers were placed in several spatial configurations, either coincident with or separated from the target. Binaural advantage was derived by subtracting SRTs from listening with the "better monaural ear" from those for binaural listening. For a single interferer, there was a binaural advantage of 2-4 dB for all interferer types. For two or three interferers, the advantage was 2-4 dB for noise and speech-modulated noise, and 6-7 dB for speech and time-reversed speech. These data suggest that the benefit of binaural hearing for speech intelligibility is especially pronounced when there are multiple voiced interferers at different locations from the target, regardless of spatial configuration; measurements with fewer or with other types of interferers can underestimate this benefit.  相似文献   

3.
This study introduces a new test (CRISP-Jr.) for measuring speech intelligibility and spatial release from masking (SRM) in young children ages 2.5-4 years. Study 1 examined whether thresholds, masking, and SRM obtained with a test designed for older children (CRISP) and CRISP-Jr. are comparable in 4 to 5-year-old children. Thresholds were measured for target speech in front, in quiet, and with a different-sex masker either in front or on the right. CRISP-Jr. yielded higher speech reception thresholds (SRTs) than CRISP, but the amount of masking and SRM did not differ across the tests. In study 2, CRISP-Jr. was extended to a group of 3-year-old children. Results showed that while SRTs were higher in the younger group, there were no age differences in masking and SRM. These findings indicate that children as young as 3 years old are able to use spatial cues in sound source segregation, which suggests that some of the auditory mechanisms that mediate this ability develop early in life. In addition, the findings suggest that measures of SRM in young children are not limited to a particular set of stimuli. These tests have potentially useful applications in clinical settings, where bilateral fittings of amplification devices are evaluated.  相似文献   

4.
Listening to speech in competing sounds poses a major difficulty for children with impaired hearing. This study aimed to determine the ability of children (3-12 yr of age) to use spatial separation between target speech and competing babble to improve speech intelligibility. Fifty-eight children (31 with normal hearing and 27 with impaired hearing who use bilateral hearing aids) were assessed by word and sentence material. Speech reception thresholds (SRTs) were measured with speech presented from 0° azimuth, and competing babble from either 0° or ±90° azimuth. Spatial release from masking (SRM) was defined as the difference between SRTs measured with co-located speech and babble and SRTs measured with spatially separated speech and babble. On average, hearing-impaired children attained near-normal performance when speech and babble originated from the frontal source, but performed poorer than their normal-hearing peers when babble was spatially separated from target speech. On average, normal-hearing children obtained an SRM of 3 dB whereas children with hearing loss did not demonstrate SRM. Results suggest that hearing-impaired children may need enhancement in signal-to-noise ratio to hear speech in difficult listening conditions as well as normal-hearing children.  相似文献   

5.
Four experiments investigated the effect of the fundamental frequency (F0) contour on speech intelligibility against interfering sounds. Speech reception thresholds (SRTs) were measured for sentences with different manipulations of their F0 contours. These manipulations involved either reductions in F0 variation, or complete inversion of the F0 contour. Against speech-shaped noise, a flattened F0 contour had no significant impact on SRTs compared to a normal F0 contour; the mean SRT for the flattened contour was only 0.4 dB higher. The mean SRT for the inverted contour, however, was 1.3 dB higher than for the normal F0 contour. When the sentences were played against a single-talker interferer, the overall effect was greater, with a 2.0 dB difference between normal and flattened conditions, and 3.8 dB between normal and inverted. There was no effect of altering the F0 contour of the interferer, indicating that any abnormality of the F0 contour serves to reduce intelligibility of the target speech, but does not alter the masking produced by interfering speech. Low-pass filtering the F0 contour increased SRTs; elimination of frequencies between 2 and 4 Hz had the greatest effect. Filtering sentences with inverted contours did not have a significant effect on SRTs.  相似文献   

6.
Children between the ages of 4 and 7 and adults were tested in free field on speech intelligibility using a four-alternative forced choice paradigm with spondees. Target speech was presented from front (0 degrees); speech or modulated speech-shaped-noise competitors were either in front or on the right (90 degrees). Speech reception thresholds were measured adaptively using a three-down/one-up algorithm. The primary difference between children and adults was seen in elevated thresholds in children in quiet and in all masked conditions. For both age groups, masking was greater with the speech-noise versus speech competitor and with two versus one competitor(s). Masking was also greater when the competitors were located in front compared with the right. The amount of masking did not differ across the two age groups. Spatial release from masking was similar in the two age groups, except for in the one-speech condition, when it was greater in children than adults. These findings suggest that, similar to adults, young children are able to utilize spatial and/or head shadow cues to segregate sounds in noisy environments. The potential utility of the measures used here for studying hearing-impaired children is also discussed.  相似文献   

7.
Speech reception thresholds (SRTs) were measured for target speech presented concurrently with interfering speech (spoken by a different speaker). In experiment 1, the target and interferer were divided spectrally into high- and low-frequency bands and presented over headphones in three conditions: monaural, dichotic (target and interferer to different ears), and swapped (the low-frequency target band and the high-frequency interferer band were presented to one ear, while the high-frequency target band and the low-frequency interferer band were presented to the other ear). SRTs were highest in the monaural condition and lowest in the dichotic condition; SRTs in the swapped condition were intermediate. In experiment 2, two new conditions were devised such that one target band was presented in isolation to one ear while the other band was presented at the other ear with the interferer. The pattern of SRTs observed in experiment 2 suggests that performance in the swapped condition reflects the intelligibility of the target frequency bands at just one ear; the auditory system appears unable to exploit advantageous target-to-interferer ratios at different ears when segregating target speech from a competing speech interferer.  相似文献   

8.
Three experiments investigated the roles of interaural time differences (ITDs) and level differences (ILDs) in spatial unmasking in multi-source environments. In experiment 1, speech reception thresholds (SRTs) were measured in virtual-acoustic simulations of an anechoic environment with three interfering sound sources of either speech or noise. The target source lay directly ahead, while three interfering sources were (1) all at the target's location (0 degrees,0 degrees,0 degrees), (2) at locations distributed across both hemifields (-30 degrees,60 degrees,90 degrees), (3) at locations in the same hemifield (30 degrees,60 degrees,90 degrees), or (4) co-located in one hemifield (90 degrees,90 degrees,90 degrees). Sounds were convolved with head-related impulse responses (HRIRs) that were manipulated to remove individual binaural cues. Three conditions used HRIRs with (1) both ILDs and ITDs, (2) only ILDs, and (3) only ITDs. The ITD-only condition produced the same pattern of results across spatial configurations as the combined cues, but with smaller differences between spatial configurations. The ILD-only condition yielded similar SRTs for the (-30 degrees,60 degrees,90 degrees) and (0 degrees,0 degrees,0 degrees) configurations, as expected for best-ear listening. In experiment 2, pure-tone BMLDs were measured at third-octave frequencies against the ITD-only, speech-shaped noise interferers of experiment 1. These BMLDs were 4-8 dB at low frequencies for all spatial configurations. In experiment 3, SRTs were measured for speech in diotic, speech-shaped noise. Noises were filtered to reduce the spectrum level at each frequency according to the BMLDs measured in experiment 2. SRTs were as low or lower than those of the corresponding ITD-only conditions from experiment 1. Thus, an explanation of speech understanding in complex listening environments based on the combination of best-ear listening and binaural unmasking (without involving sound-localization) cannot be excluded.  相似文献   

9.
Speech reception thresholds were measured to investigate the influence of a room on speech segregation between a spatially separated target and interferer. The listening tests were realized under headphones. A room simulation allowed selected positioning of the interferer and target, as well as varying the absorption coefficient of the room internal surfaces. The measurements involved target sentences and speech-shaped noise or 2-voice interferers. Four experiments revealed that speech segregation in rooms was not only dependent on the azimuth separation of sound sources, but also on their direct-to-reverberant energy ratio at the listening position. This parameter was varied for interferer and target independently. Speech intelligibility decreased as the direct-to-reverberant ratio of sources was degraded by sound reflections in the room. The influence of the direct-to-reverberant ratio of the interferer was in agreement with binaural unmasking theories, through its effect on interaural coherence. The effect on the target occurred at higher levels of reverberation and was explained by the intrinsic degradation of speech intelligibility in reverberation.  相似文献   

10.
Two experiments investigated the effect of reverberation on listeners' ability to perceptually segregate two competing voices. Culling et al. [Speech Commun. 14, 71-96 (1994)] found that for competing synthetic vowels, masked identification thresholds were increased by reverberation only when combined with modulation of fundamental frequency (F0). The present investigation extended this finding to running speech. Speech reception thresholds (SRTs) were measured for a male voice against a single interfering female voice within a virtual room with controlled reverberation. The two voices were either (1) co-located in virtual space at 0 degrees azimuth or (2) separately located at +/-60 degrees azimuth. In experiment 1, target and interfering voices were either normally intonated or resynthesized with a fixed F0. In anechoic conditions, SRTs were lower for normally intonated and for spatially separated sources, while, in reverberant conditions, the SRTs were all the same. In experiment 2, additional conditions employed inverted F0 contours. Inverted F0 contours yielded higher SRTs in all conditions, regardless of reverberation. The results suggest that reverberation can seriously impair listeners' ability to exploit differences in F0 and spatial location between competing voices. The levels of reverberation employed had no effect on speech intelligibility in quiet.  相似文献   

11.
Speech reception thresholds were measured in virtual rooms to investigate the influence of reverberation on speech intelligibility for spatially separated targets and interferers. The measurements were realized under headphones, using target sentences and noise or two-voice interferers. The room simulation allowed variation of the absorption coefficient of the room surfaces independently for target and interferer. The direct-to-reverberant ratio and interaural coherence of sources were also varied independently by considering binaural and diotic listening. The main effect of reverberation on the interferer was binaural and mediated by the coherence, in agreement with binaural unmasking theories. It appeared at lower reverberation levels than the effect of reverberation on the target, which was mainly monaural and associated with the direct-to-reverberant ratio, and could be explained by the loss of amplitude modulation in the reverberant speech signals. This effect was slightly smaller when listening binaurally. Reverberation might also be responsible for a disruption of the mechanism by which the auditory system exploits fundamental frequency differences to segregate competing voices, and a disruption of the "listening in the gaps" associated with speech interferers. These disruptions may explain an interaction observed between the effects of reverberation on the targets and two-voice interferers.  相似文献   

12.
A masker can reduce target intelligibility both by interfering with the target's peripheral representation ("energetic masking") and/or by causing more central interference ("informational masking"). Intelligibility generally improves with increasing spatial separation between two sources, an effect known as spatial release from masking (SRM). Here, SRM was measured using two concurrent sine-vocoded talkers. Target and masker were each composed of eight different narrowbands of speech (with little spectral overlap). The broadband target-to-masker energy ratio (TMR) was varied, and response errors were used to assess the relative importance of energetic and informational masking. Performance improved with increasing TMR. SRM occurred at all TMRs; however, the pattern of errors suggests that spatial separation affected performance differently, depending on the dominant type of masking. Detailed error analysis suggests that informational masking occurred due to failures in either across-time linkage of target segments (streaming) or top-down selection of the target. Specifically, differences in the spatial cues in target and masker improved streaming and target selection. In contrast, level differences helped listeners select the target, but had little influence on streaming. These results demonstrate that at least two mechanisms (differentially affected by spatial and level cues) influence informational masking.  相似文献   

13.
Speech intelligibility was investigated by varying the number of interfering talkers, level, and mean pitch differences between target and interfering speech, and the presence of tactile support. In a first experiment the speech-reception threshold (SRT) for sentences was measured for a male talker against a background of one to eight interfering male talkers or speech noise. Speech was presented diotically and vibro-tactile support was given by presenting the low-pass-filtered signal (0-200 Hz) to the index finger. The benefit in the SRT resulting from tactile support ranged from 0 to 2.4 dB and was largest for one or two interfering talkers. A second experiment focused on masking effects of one interfering talker. The interference was the target talker's own voice with an increased mean pitch by 2, 4, 8, or 12 semitones. Level differences between target and interfering speech ranged from -16 to +4 dB. Results from measurements of correctly perceived words in sentences show an intelligibility increase of up to 27% due to tactile support. Performance gradually improves with increasing pitch difference. Louder target speech generally helps perception, but results for level differences are considerably dependent on pitch differences. Differences in performance between noise and speech maskers and between speech maskers with various mean pitches are explained by the effect of informational masking.  相似文献   

14.
This study investigated the role of uncertainty in masking of speech by interfering speech. Target stimuli were nonsense sentences recorded by a female talker. Masking sentences were recorded from ten female talkers and combined into pairs. Listeners' recognition performance was measured with both target and masker presented from a front loudspeaker (nonspatial condition) or with a masker presented from two loudspeakers, with the right leading the front by 4 ms (spatial condition). In Experiment 1, the sentences were presented in blocks in which the masking talkers, spatial configuration, and signal-to-noise (S-N) ratio were fixed. Listeners' recognition performance varied widely among the masking talkers in the nonspatial condition, much less so in the spatial condition. This result was attributed to variation in effectiveness of informational masking in the nonspatial condition. The second experiment increased uncertainty by randomizing masking talkers and S-N ratios across trials in some conditions, and reduced uncertainty by presenting the same token of masker across trials in other conditions. These variations in masker uncertainty had relatively small effects on speech recognition.  相似文献   

15.
The effect of perceived spatial differences on masking release was examined using a 4AFC speech detection paradigm. Targets were 20 words produced by a female talker. Maskers were recordings of continuous streams of nonsense sentences spoken by two female talkers and mixed into each of two channels (two talker, and the same masker time reversed). Two masker spatial conditions were employed: "RF" with a 4 ms time lead to the loudspeaker 60 degrees horizontally to the right, and "FR" with the time lead to the front (0 degrees ) loudspeaker. The reference nonspatial "F" masker was presented from the front loudspeaker only. Target presentation was always from the front loudspeaker. In Experiment 1, target detection threshold for both natural and time-reversed spatial maskers was 17-20 dB lower than that for the nonspatial masker, suggesting that significant release from informational masking occurs with spatial speech maskers regardless of masker understandability. In Experiment 2, the effectiveness of the FR and RF maskers was evaluated as the right loudspeaker output was attenuated until the two-source maskers were indistinguishable from the F masker, as measured independently in a discrimination task. Results indicated that spatial release from masking can be observed with barely noticeable target-masker spatial differences.  相似文献   

16.
Although many researchers have shown that listeners are able to selectively attend to a target speech signal when a masking talker is present in the same ear as the target speech or when a masking talker is present in a different ear than the target speech, little is known about selective auditory attention in tasks with a target talker in one ear and independent masking talkers in both ears at the same time. In this series of experiments, listeners were asked to respond to a target speech signal spoken by one of two competing talkers in their right (target) ear while ignoring a simultaneous masking sound in their left (unattended) ear. When the masking sound in the unattended ear was noise, listeners were able to segregate the competing talkers in the target ear nearly as well as they could with no sound in the unattended ear. When the masking sound in the unattended ear was speech, however, speech segregation in the target ear was substantially worse than with no sound in the unattended ear. When the masking sound in the unattended ear was time-reversed speech, speech segregation was degraded only when the target speech was presented at a lower level than the masking speech in the target ear. These results show that within-ear and across-ear speech segregation are closely related processes that cannot be performed simultaneously when the interfering sound in the unattended ear is qualitatively similar to speech.  相似文献   

17.
Although many studies have shown that intelligibility improves when a speech signal and an interfering sound source are spatially separated in azimuth, little is known about the effect that spatial separation in distance has on the perception of competing sound sources near the head. In this experiment, head-related transfer functions (HRTFs) were used to process stimuli in order to simulate a target talker and a masking sound located at different distances along the listener's interaural axis. One of the signals was always presented at a distance of 1 m, and the other signal was presented 1 m, 25 cm, or 12 cm from the center of the listener's head. The results show that distance separation has very different effects on speech segregation for different types of maskers. When speech-shaped noise was used as the masker, most of the intelligibility advantages of spatial separation could be accounted for by spectral differences in the target and masking signals at the ear with the higher signal-to-noise ratio (SNR). When a same-sex talker was used as the masker, the intelligibility advantages of spatial separation in distance were dominated by binaural effects that produced the same performance improvements as a 4-5-dB increase in the SNR of a diotic stimulus. These results suggest that distance-dependent changes in the interaural difference cues of nearby sources play a much larger role in the reduction of the informational masking produced by an interfering speech signal than in the reduction of the energetic masking produced by an interfering noise source.  相似文献   

18.
A mathematical formula for estimating spatial release from masking (SRM) in a cocktail party environment would be useful as a simpler alternative to computationally intensive algorithms and may enhance understanding of underlying mechanisms. The experiment presented herein was designed to provide a strong test of a model that divides SRM into contributions of asymmetry and angular separation [Bronkhorst (2000). Acustica 86, 117-128] and to examine whether that model can be extended to include speech maskers. Across masker types the contribution to SRM of angular separation of maskers from the target was found to grow at a diminishing rate as angular separation increased within the frontal hemifield, contrary to predictions of the model. Speech maskers differed from noise maskers in the overall magnitude of SRM and in the contribution of angular separation (both greater for speech). These results were used to develop a modified model that achieved good fits to data for noise maskers (ρ=0.93) and for speech maskers (ρ=0.94) while using the same functions to describe separation and asymmetry components of SRM for both masker types. These findings suggest that this approach can be used to accurately model SRM for speech maskers in addition to primarily "energetic" noise maskers.  相似文献   

19.
This study tested the hypothesis that the reduction in spatial release from masking (SRM) resulting from sensorineural hearing loss in competing speech mixtures is influenced by the characteristics of the interfering speech. A frontal speech target was presented simultaneously with two intelligible or two time-reversed (unintelligible) speech maskers that were either colocated with the target or were symmetrically separated from the target in the horizontal plane. The difference in SRM between listeners with hearing impairment and listeners with normal hearing was substantially larger for the forward maskers (deficit of 5.8 dB) than for the reversed maskers (deficit of 1.6 dB). This was driven by the fact that all listeners, regardless of hearing abilities, performed similarly (and poorly) in the colocated condition with intelligible maskers. The same conditions were then tested in listeners with normal hearing using headphone stimuli that were degraded by noise vocoding. Reducing the number of available spectral channels systematically reduced the measured SRM, and again, more so for forward (reduction of 3.8 dB) than for reversed speech maskers (reduction of 1.8 dB). The results suggest that non-spatial factors can strongly influence both the magnitude of SRM and the apparent deficit in SRM for listeners with impaired hearing.  相似文献   

20.
Binaural speech intelligibility of individual listeners under realistic conditions was predicted using a model consisting of a gammatone filter bank, an independent equalization-cancellation (EC) process in each frequency band, a gammatone resynthesis, and the speech intelligibility index (SII). Hearing loss was simulated by adding uncorrelated masking noises (according to the pure-tone audiogram) to the ear channels. Speech intelligibility measurements were carried out with 8 normal-hearing and 15 hearing-impaired listeners, collecting speech reception threshold (SRT) data for three different room acoustic conditions (anechoic, office room, cafeteria hall) and eight directions of a single noise source (speech in front). Artificial EC processing errors derived from binaural masking level difference data using pure tones were incorporated into the model. Except for an adjustment of the SII-to-intelligibility mapping function, no model parameter was fitted to the SRT data of this study. The overall correlation coefficient between predicted and observed SRTs was 0.95. The dependence of the SRT of an individual listener on the noise direction and on room acoustics was predicted with a median correlation coefficient of 0.91. The effect of individual hearing impairment was predicted with a median correlation coefficient of 0.95. However, for mild hearing losses the release from masking was overestimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号