首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mass spectral fragmentation behavior of ten iridoid glucosides (IGs) has been studied using electrospray ionization (ESI), collision-induced dissociation (CID), and quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS). In the negative ESI mass spectra, the deprotonated [M-H](-) ion was observed for all of the ten IGs except gardoside methyl ester, while the formate adduct [M+HCOO](-) ion appeared to be favored by the presence of a methyl ester or a lactone group in the C-4 position when formic acid was added to the mobile phase. The CID MS/MS spectra of the [M-H](-) ions have been used for structural elucidation. Ring cleavages of the aglycone moiety have been observed in the MS/MS spectra, corresponding to (1,4)F(-), (2,6)F(-), (2,7)F(-), and (2,7)F(0) (-) ions, based on accurate mass measurements and the elemental compositions of the product ions. These characteristic ions gave valuable information on the basic structural skeletons. Furthermore, on the basis of the relative abundances of the fragment ions (1,4)F(-) and (2,7)F(-), different sub-classes, such as cyclopentane-type and 7,8-cyclopentene-type IGs, can be differentiated. Ring cleavage of the sugar moieties was also observed, yielding useful information for their characterization. In addition, the neutral losses, such as H(2)O, CO(2), CH(3)OH, CH(3)COOH, and glucosidic units, have proved useful for confirming the presence of functional substituents in the structures of the IGs. Based on the fragmentation patterns of these standard IGs, twelve IGs have been characterized in an extract of Hedyotis diffusa Willd. by means of ultra-performance liquid chromatography/Q-TOF MS/MS, of which six have been unambiguously identified and the other six have been tentatively identified.  相似文献   

2.
ESI and CID mass spectra were obtained for four pyrimidine nucleoside antiviral agents and the corresponding compounds in which the labile hydrogens were replaced by deuterium using gas-phase exchange. The number of labile hydrogens, x, was determined from a comparison of ESI spectra obtained with N(2) and with ND(3) as the nebulizer gas. CID mass spectra were obtained for [M + H](+) and [M - H](-) ions and the exchanged analogs, [M(D(x)) + D](+) and [M(D(x)) - D](-), produced by ESI using a SCIEX API-III(plus) mass spectrometer. Protonated pyrimidine antiviral agents dissociate through rearrangement decompositions of base-protonated [M + H](+) ions by cleavage of the glycosidic bonds to give the protonated bases with a sugar moiety as the neutral fragment. Cleavage of the glycosidic bonds with charge retention on the sugar moiety eliminates the base moiety as a neutral molecule and produces characteristic sugar ions. CID of protonated pyrimidine bases, [B + H](+), occurs through three major pathways: (1) elimination of NH(3) (ND(3)), (2) loss of H(2)O (D(2)O), and (3) elimination of HNCO (DNCO). Protonated trifluoromethyl uracil, however, dissociates primarily through elimination of HF followed by the loss of HNCO. CID mass spectra of [M - H](-) ions of all four antiviral agents show NCO(-) as the principal decomposition product. A small amount of deprotonated base is also observed, but no sugar ions. Elimination of HNCO, HN(3), HF, CO, and formation of iodide ion are minor dissociation pathways from [M - H](-) ions.  相似文献   

3.
Liquid chromatography coupled with ionspray mass spectrometry in the tandem mode (LC/MS/MS) with negative ion detection was used for the identification of a variety of phenolic compounds in a cocoa sample. Gradient elution with water and acetonitrile, both containing 0.1% HCOOH, was used. Standard solutions of 31 phenolic compounds, including benzoic and cinnamic acids and flavonoid compounds, were studied in the negative ion mode using MS/MS product ion scans. At low collisional activation, the deprotonated molecule [M - H](-) was observed for all the compounds studied. For cinnamic and benzoic acids, losses of CO(2) or formation of [M - CH(3)](-*) in the case of methoxylated compounds were observed. However, for flavonol and flavone glycosides, the spectra present both the deprotonated molecule [M - H](-) of the glycoside and the ion corresponding to the deprotonated aglycone [A - H](-). The latter ion is formed by loss of the rhamnose, glucose, galactose or arabinose residue from the glycosides. Different fragmentation patterns were observed in MS/MS experiments for flavone-C-glycosides which showed fragmentation in the sugar part. Fragmentation of aglycones provided characteristic ions for each family of flavonoids. The optimum LC/MS/MS conditions were applied to the characterization of a cocoa sample that had been subjected to an extraction/clean-up procedure which involved chromatography on Sephadex LH20 and thin-layer chromatographic monitoring. In addition to compounds described in the literature, such as epicatechin and catechin, quercetin, isoquercitrin (quercetin-3-O-glucoside) and quercetin-3-O-arabinose, other compounds were identified for the first time in cocoa samples, such as hyperoside (quercetin-3-O-galactoside), naringenin, luteolin, apigenin and some O-glucosides and C-glucosides of these compounds.  相似文献   

4.
A series of meso-dialkyl, alkyl aryl and cycloalkyl calix(4)pyrroles (1-15) are studied under positive and negative ion electrospray ionization (ESI) conditions. The positive ion spectra show abundant [M + H](+) and [M + Na](+) ions and the negative ion spectra show the [M + Cl](-) (the Cl(-) ions from the solvent) and [M - H](-) ions. The collision induced dissociation (CID) spectra of [M + H](+), [M + Na](+), [M + Cl](-) and [M - H](-) ions are studied to understand their dissociation pathway and compared to that reported for M(+) under electron ionization (EI) conditions. The beta-cleavage process that was diagnostic to M(+) is absent in all the CID spectra of the ions studied under ESI. Dissociation of all the studied ions resulted in the fragment ions formed by sequential elimination of pyrrole (A) and/or dialkyl/alkyl aryl/cycloalkyl (B) groups involving hydrogen migration to pyrrole ring at each cleavage of A--B bond, which clearly reveals the arrangement of A and B groups in the calix(4)pyrroles. The source of hydrogen that migrates to pyrrole ring during A--B bond cleavage is investigated by the experiments on deuterated compounds and [M + D](+) ions; and confirmed that the hydrogen attached to pyrrole nitrogen, hydrogen on alpha-carbon of alkyl group and the H(+)/Na(+) ion that added during ESI process to generate [M + H](+)/[M + Na](+) ions involve in the migration. The yields of [M + Na](+) ions are found to be different for the isomeric meso-cycloalkyl compounds (cycloheptyl, and 2-, 3- and 4-methyl cyclohexyl) and for normal and N-confused calix(4)pyrroles. The isomeric methyl and 3-hydroxy/4-hydroxy phenyl calix(4)pyrroles show specific fragmentation pattern during the dissociation of their [M - H](-) ions.  相似文献   

5.
Mass spectrometric methodology based on the combined use of positive and negative electrospray ionization, collision-induced dissociation (CID) and tandem mass spectrometry (MS/MS) has been applied to the structural characterization of 6-hydroxyluteolin 7-O-glucoside and 7-O-glucosyl-(1 --> 3)-glucoside. In-source fragmentation of both glycosides at an increased potential yielded the protonated and deprotonated aglycone, allowing CID spectra to be obtained. The differentiation between quercetin and 6-hydroxyluteolin aglycones was achieved by product ion analysis of the protonated and deprotonated aglycone (m/z 303 and 301), that showed the characteristic product ions (1,3)A at m/z 151 and 153 for quercetin, and m/z 167 and 169 for 6-hydroxyluteolin, consistent with the trihydroxylated A-ring skeleton. In the negative ion mode both glycosides were shown to undergo collision-induced homolytic and heterolytic cleavages of the O-glycosidic bond producing the aglycone radical-anion [Y0-H]-* and Y0(-) product ions. At lower collision energy, various fragmentations involving the glucose moieties were observed with a relatively higher abundance for the monoglucoside compared to the diglucoside. In the latter case both the inner and the terminal glucose residues were involved in the fragmentations, giving useful information on the 1 --> 3 interglycosidic linkage. CID MS/MS analysis of the sodiated molecules gave complementary information for the structural characterization of the studied compounds. Fragmentation mechanisms are proposed for the observed product ions.  相似文献   

6.
Flavonoid conjugates constitute several classes of plant phenolic secondary metabolites including many isomeric compounds differing in the hydroxylation pattern and substitution of their rings with different groups such as alkyls, acyls or sugars. These compounds occur in plant tissues mainly as glycosides and in many cases it is necessary to have reliable and detailed information concerning the structure of these natural products. Our results were obtained using leaf extracts of Arabidopsis thaliana and Lupinus angustifolius in which different glycosides of flavones, flavonols and isoflavones are present. Analysis of collision-induced dissociation (CID)/MS/MS spectra of protonated [M + H](+), sodiated [M + Na](+) or deprotonated [M - H](-) molecules recorded during HPLC runs may bring needed information in this respect. However, registration of mass spectra of [M + Na](+) ions with a good efficiency is possible only after post-column addition of a sodium acetate solution to the LC column eluate. The retention of sodium cation on the saccharidic parts of the molecule is observed after the CID fragmentation. In many cases, the location of this cation on the glycan attached to C-3 hydroxyl group of flavonol led to assignment of its structure. Additionally, the determination of the structure of the aglycone and of the sequence of the glycan part was made possible through the CID data obtained from the [M + H](+) and [M - H](-) ions. CID spectra show a different order of sugar elimination from hydroxyl groups at C-3 and C-7 in flavonol glycosides isolated from A. thaliana leaves and give sufficient information to discriminate flavonoid O-diglycosides from flavonoid di-O-glycosides.  相似文献   

7.
本文采用高效液相色谱与电喷雾质谱联用技术在线分析鉴定了车前草提取物中的三种苯乙醇苷化合物。实验采用反相C18色谱柱,0.2%的醋酸水溶液和乙腈梯度洗脱,车前草中的苯乙醇苷化合物得到很好的分离。在电喷雾质谱负离子条件下,获得了三种苯乙醇苷化合物的分子离子峰,分子量信息,进一步通过质谱的源内CID技术得到相应化合物的结构信息。通过得到的这些信息与文献中的已知化合物或标准品对照从而推断出化合物的结构。  相似文献   

8.
ESI and CID mass spectra were obtained for two purine nucleoside antiviral agents (acycloguanosine and vidarabine) and one purine nucleotide (vidarabine monophosphate) and the corresponding compounds in which the labile hydrogens were replaced by deuterium gas phase exchange. The number of labile hydrogens, x, was determined from a comparison of ESI spectra obtained with N(2) and with ND(3) as the nebulizer gas. CID mass spectra were obtained for [M+H](+) and [M -H](-) ions and the exchanged analogs, [M(Dx)+D](+) and [M(Dx)-D](-), produced by ESI using a Sciex API-IIIplus mass spectrometer. Compositions of product ions and mechanisms of decomposition were determined by comparison of the CID mass spectra of the undeuterated and deuterated species. Protonated purine antiviral agents dissociate through rearrangement decompositions of base-protonated [M+H](+) ions by cleavage of the glycosidic bonds to give the protonated bases with a sugar moiety as the neutral fragment. Cleavage of the same bonds with charge retention on the sugar moiety gives low abundance ions, due to the low proton affinity of the sugar moiety compared to that of purine base. CID of protonated purine bases [B+H](+) occurs through two major pathways: (1) elimination of NH(3) (ND(3)) and (2) loss of NH(2)CN (ND(2)CN). Minor pathways include elimination of HNCO (DNCO), loss of CO, and loss of HCN (DCN). Deprotonated acycloguanosine and vidarabine exhibit the deprotonated base [B-H](-) as a major fragment from glycosidic bond cleavage and charge delocalization on the base. Deprotonated vidarabine monophosphate, however, shows predominantly phosphate related product ions. CID of deprotonated guanine shows two principal pathways: (1) elimination of NH(3) (ND(3)) and (2) loss of NH(2)CN (ND(2)CN). Minor pathways include elimination of HNCO (DNCO), loss of CO, and loss of HCN (DCN). The dissociation reactions of deprotonated adenine, however, proceed by elimination of HCN and (2) elimination of NCHNH (NCHND). The mass spectra of the antiviral agents studied in this paper may be useful in predicting reaction pathways in other heteroaromatic ring decompositions of nucleosides and nucleotides.  相似文献   

9.
Through investigation of the metabolism of rhubarb extract by rat intestinal bacteria, a total of 14 components in rhubarb extract were found to be biotransformed. These components included aloe-emodin-O-glucosides, emodin-O-glucosides, chrysophanol-O-glucosides, physcion-O-glucosides and the corresponding aglycones. Rhein also could be biotransformed by rat intestinal bacteria. Twelve major metabolites were detected in the incubation sample. Under ESI tandem mass conditions, the sequential fragmentation patterns of [M H](-) ions were similar to those of free anthraquinones, thus allowing the rapid identification of the metabolites formed in incubation samples. The results suggested that the proposed hydrolysis of glycoside group followed by hydrogenation in quinoid moiety and/or further acetylation was the major biotransformation pathway for these anthraquinone glycosides by rat intestinal bacteria.  相似文献   

10.
Electrospray ionization (ESI) and collisionally induced dissociation (CID) mass spectra were obtained for five tetracyclines and the corresponding compounds in which the labile hydrogens were replaced by deuterium by either gas phase or liquid phase exchange. The number of labile hydrogens, x, could easily be determined from a comparison of ESI spectra obtained with N2 and with ND3 as the nebulizer gas. CID mass spectra were obtained for [M + H]+ and [M - H]- ions and the exchanged analogs, [M(Dx) + D]+ and [M(Dx) - D]- , and produced by ESI using a Sciex API-III(plus) and a Finnigan LCQ ion trap mass spectrometer. Compositions of product ions and mechanisms of decomposition were determined by comparison of the MS(N) spectra of the un-deuterated and deuterated species. Protonated tetracyclines dissociate initially by loss of H2O (D2O) and NH3 (ND3) if there is a tertiary OH at C-6. The loss of H2O (D2O) is the lower energy process. Tetracyclines without the tertiary OH at C-6 lose only NH3 (ND3) initially. MSN experiments showed easily understandable losses of HDO, HN(CH3)2, CH3 - N=CH2, and CO from fragment ions. The major fragment ions do not come from cleavage reactions of the species protonated at the most basic site. Deprotonated tetracyclines had similar CID spectra, with less fragmentation than those observed for the protonated tetracyclines. The lowest energy decomposition paths for the deprotonated tetracyclines are the competitive loss of NH3 (ND3) or HNCO (DNCO). Product ions appear to be formed by charge remote decompositions of species de-protonated at the C-10 phenol.  相似文献   

11.
Off-site detection of the hydrolysed products of sulfur mustards in aqueous samples is an important task in the verification of Chemical Weapons Convention (CWC)-related chemicals. The hydrolysed products of sulfur mustards are studied under positive and negative electrospray ionisation (ESI) conditions using an additive with a view to detecting them at trace levels. In the presence of cations (Li(+), Na(+), K(+) and NH(4) (+)), the positive ion ESI mass spectra of all the compounds include the corresponding cationised species; however, only the [M+NH(4)](+) ions form [M+H](+) ions upon decomposition. The tandem mass (MS/MS) spectra of [M+H](+) ions from all the hydrolysed products of the sulfur mustard homologues were distinct and allowed these compounds to be characterised unambiguously. Similarly, the negative ion ESI mass spectra of all the compounds show prominent adducts with added anions (F(-), Cl(-), Br(-), and I(-)), but the [M-H](-) ion can only be generated by decomposition of an [M+F](-) ion. The MS/MS spectra of the [M-H](-) ions from all the compounds result in a common product ion at m/z 77. A precursor ion scan of m/z 77 is shown to be useful in the rapid screening of these compounds in aqueous samples at trace levels, even in the presence of complex masking agents, without the use of time-consuming sample preparation and chromatography steps. An MS/MS method developed to measure the detection limits of the hydrolysed products of sulfur mustards found these to be in the range of 10-500 ppb.  相似文献   

12.
Propofol (2,6-diisopropyl phenol) is a widely used intravenous anesthetic. To define its pharmacokinetics and pharmacodynamics, methods for its quantitation in biological matrixes have been developed, but its pattern of mass spectral fragmentation is unknown. We found that fragmentation of the [M - H](-) ion (m/z 177) of propofol in both APCI MS/MS and ESI MS/MS involves the stepwise loss of a methyl radical and a hydrogen radical from one isopropyl side chain to give the most intense product ion, [M -H - CH(4)](-), at m/z 161. This two-step process is also the preferred mode of fragmentation for similar branched alkyl substituted phenols. This mode of fragmentation of the [M - H](-) ion is supported by three independent lines of evidence: (1) the presence of the intermediary [M - H - CH(3)](-) radical ion under conditions of reduced collision energy, (2) the determination of the mass of the predominant [M - H - CH(4)](-) product ion by high resolution mass spectrometry, and (3) the pattern of product ions resulting from further fragmentation of the [M - H - CH(4)](-) product ion. Phenols with a single straight chain alkyl substituent, in contrast, undergo beta elimination of the alkyl radical irrespective of the length of the alkyl chain, yielding the most intense product ion at m/z 106. This product ion represents a special case of a stable intermediary radical for the two-step process described for branched side chains, because further elimination of a hydrogen radical from the beta carbon is not possible.  相似文献   

13.
Fruitbodies of the genus Hygrophorus (Basidiomycetes) contain a series of anti-biologically active compounds. These substances named hygrophorones possess a cyclopentenone skeleton. LC/ESI-MS/MS presents a valuable tool for the identification of such compounds. The mass spectral behaviour of typical selected members of this group under positive and negative ion electrospray conditions is discussed. Using the ESI collision-induced dissociation (CID) mass spectra of the [M + H]+ and [M - H]- ions, respectively, the compounds can be classified with respect to the substitution pattern at the cyclopentenone ring and the type of oxygenation at C-6 (hydroxy/acetoxy or oxo function) of the side chain. The elemental composition of the fragment ions was determined by ESI-QqTOF measurements. Thus, in case of the negative ion CID mass spectra an unusual loss of CO2 from the deprotonated molecular ions could be observed.  相似文献   

14.
We described a multiple-stage ion-trap mass spectrometric approach to characterize the structures of phosphatidylinositol and phosphatidyl-myoinositol mannosides (PIMs) in a complex mixture isolated from Mycobacterium bovis Bacillus Calmette Guérin. The positions of the fatty acyl substituents of PIMs at the glycerol backbone can be easily assigned, based on the findings that the ions arising from losses of the fatty acid substituent at sn-2 as molecules of acid and of ketene, respectively (that is, the [M - H - R(2)CO(2)H](-) and [M - H - R(2)CHCO](-) ions), are respectively more abundant than the ions arising from the analogous losses at sn-1 (that is, the [M - H - R(1)CO(2)H](-) and [M - H - R(1)CHCO](-) ions) in the MS(2) product-ion spectra of the [M - H](-) ions desorbed by electrospray ionization (ESI). Further dissociation of the [M - H - R(2)CO(2)H](-) and [M - H - R(1)CO(2)H](-) ions gives rise to a pair of unique ions corresponding to losses of 74 and 56 Da (that is, [M - H - R(x)CO(2)H - 56](-) and [M - H - R(x)CO(2)H - 74](-) ions, x = 1, 2), respectively, probably arising from various losses of the glycerol. The profile of the ion-pair in the MS(3) spectrum of the [M - H - R(2)CO(2)H](-) ion is readily distinguishable from that in the MS(3) spectrum of the [M - H - R(1)CO(2)H](-) ion and thus the assignment of the fatty acid substituents at the glycerol backbone can be confirmed. The product-ion spectra of the [M - H](-) ions from 2-lyso-PIM and from 1-lyso-PIM are discernible and both spectra contain a unique ion that arises from primary loss of the fatty acid substituent at the glycerol backbone, followed by loss of a bicyclic glycerophosphate ester moiety of 136 Da. The combined structural information from the MS(2) and MS(3) product-ion spectra permit the complex structures of PIMs that consist of various isomers to be unveiled in detail.  相似文献   

15.
Collisional-induced dissociation (CID) mass spectra of the [M + H](+) and [M - H](-) ions obtained under fast atom bombardment conditions of a number of methyl glycoside di-, tri- and tetrasaccharides, containing D-xylopyranosyl and/or L-arabinofuranosyl residues at the non-reducing terminus, do not provide information about their ring size. This information could only be obtained from a careful comparison of the intensity ratio of the [M + Na - 90](+) and [M + Na - 104](+) ions ((0,2)X(t)/(1,5)X(t)) in the high-energy CID spectra of the sodium-cationized di-, tri- and probably also tetrasaccharide compounds.  相似文献   

16.
Eleven different anionic species were able to form adducts with neutral oligosaccharides at low cone voltage in negative ion mode electrospray mass spectrometry. Among them, fluoride and acetate have the ability to significantly enhance the absolute abundance of [M - H](-) for neutral oliogosaccharides, which otherwise have low tendencies to deprotonate due to the lack of a highly acidic group. Evidence shows that the source of high abundances of [M - H](-) for neutral oligosaccharides arises from the decomposition of [M + F](-) and [M + Ac](-) with neutral losses of HF and HAc, respectively. The chloride adducts have the best stability among all the adduct species investigated, and chloride adducts consistently appeared in higher abundances relative to [M - H](-). In tandem mass spectrometry (ES-MS/MS) experiments, upon collision induced dissociation (CID), F(-) and Ac(-) adducts gave purely analyte-related product ions, i.e., no detection of the attaching anion and no incorporation of these anions into decomposition products. Cl(-) adducts produced both Cl(-) and analyte-related product ions. For the above three anions, CID of adduct species may be used for structural determination of neutral oligosaccharides because, in each case, structurally-informative fragment ions were produced. In the presence of F(-) and Ac(-), simultaneous detection of acidic and neutral oligosaccharides was achieved, because the problem of the presence of an acidic group that can impede the deprotonation of a neutral oligosaccharide was minimized. The ratio of Cl(-):non-Cl-containing product ions obtained in CID spectra of chloride adducts of disaccharides was used to differentiate anomeric configurations of disaccharides. Density functional theory (DFT) was employed to evaluate the optimized structures of chloride adducts of disaccharides, and it was found that chloride anions favor close contact with the hydrogen from the anomeric hydroxyl group. Multiple hydrogen bonding further stabilizes the chloride adduct.  相似文献   

17.
We describe tandem mass spectrometric approaches, including multiple stage ion-trap and source collisionally activated dissociation (CAD) tandem mass spectrometry with electrospray ionization (ESI) to characterize inositol phosphorylceramide (IPC) species seen as [M - H](-) and [M - 2H + Li](-) ions in the negative-ion mode as well as [M + H](+), [M + Li](+), and [M - H + 2Li](+) ions in the positive-ion mode. Following CAD in an ion-trap or a triple-stage quadrupole instrument, the [M - H](-) ions of IPC yielded fragment ions reflecting only the inositol and the fatty acyl substituent of the molecule. In contrast, the mass spectra from MS(3) of [M - H - Inositol](-) ions contained abundant ions that are readily applicable for assignment of the fatty acid and long-chain base (LCB) moieties. Both the product-ion spectra from MS(2) and MS(3) of the [M - 2H + Alk](-), [M + H](+), [M + Alk](+), and [M - H + 2Alk](+) ions also contained rich fragment ions informative for unambiguous assignment of the fatty acyl substituent and the LCB. However, the sensitivity of the ions observed in the forms of [M - 2H + Alk](-), [M + H](+), [M + Alk](+), and [M - H + 2Alk](+) (Alk = Li, Na) is nearly 10 times less than that observed in the [M - H](-) form. In addition to the major fragmentation pathways leading to elimination of the inositol or inositol monophosphate moiety, several structurally informative ions resulting from rearrangement processes were observed. The fragmentation processes are similar to those previously reported for ceramides. While the tandem mass spectrometric approach using MS(n) (n = 2, 3) permits the structures of the Leishmania major IPCs consisting of two isomeric structures to be unveiled in detail, tandem mass spectra from constant neutral loss scans may provide a simple method for detecting IPC in mixtures.  相似文献   

18.
Mass spectrometric methodology based on the combined use of positive and negative electrospray ionization, collision-induced dissociation (CID) and tandem mass spectrometry (MS/MS) has been applied to the mass spectral study of a series of six naturally occurring iridoids through in-source fragmentation of the protonated [M+H]+, deprotonated [M--H]- and sodiated [M+Na]+ ions. This led to the unambiguous determination of the molecular masses of the studied compounds and allowed CID spectra of the molecular ions to be obtained. Valuable structural information regarding the nature of both the glycoside and the aglycone moiety was thus obtained. Glycosidic cleavage and ring cleavages of both aglycone and sugar moieties were the major fragmentation pathways observed during CID, where the losses of small molecules, the cinnamoyl and the cinnamate parts were also observed. The formation of the ionized aglycones, sugars and their product ions was thus obtained giving information on their basic skeleton. The protonated, i.e. [M+H]+ and deprotonated [M--H]-, ions were found to fragment mainly by glycosidic cleavages. MS/MS spectra of the [M+Na]+ ions gave complementary information for the structural characterization of the studied compounds. Unlike the dissociation of protonated molecular ions, that of sodiated molecules also provided sodiated sugar fragments where the C0+ fragment corresponding to the glucose ion was obtained as base peak for all the studied compounds.  相似文献   

19.
An ion trap LC-MS/MS method is described for the analysis of C-glycosylflavone O-glycosides in crude methanolic extracts of plants. The method employs survey scans with and without the application of up-front collision induced dissociation (CID) to generate diagnostic ions for data-directed MS/MS. The spectra acquired allow assignment of the C-linked sugar to either the C-6 or C-8 position of the aglycone and provide data on the molecular mass of the compound, the number and type of O-linked sugars and the molecular mass of the flavone aglycone. These data for the majority of C-glycosylflavone O-glycosides in an extract are obtained automatically in one LC-MS/MS analysis without manual pre-programming. Key to the assignment of the C-6 or C-8 site of C-glycosylation is the generation, by up-front CID, of the (0,1)X+ product ion formed by internal cleavage of the C-linked sugar. MS/MS of this ion is found to have diagnostic value in addition to the (0,2)X+ product ion described by other authors. Ion trap MS/MS spectra of [M+H]+ of the 6,8-di-C-glycosylflavones schaftoside and isoschaftoside show an additional and previously unreported diagnostic product ion that is useful in determining the type of sugar at the C-6 position. The product ion spectra of protonated kaempferol 3-O-glucosylrhamnosides show similarities to the spectra of C-glycosylflavone O-glycosides; this is a potential source of confusion if the analysis of such glycosides is limited solely to MS/MS of [M+H]+.  相似文献   

20.
A non-covalent-bonded dimer was detected in the positive ion electrospray ionisation (ESI) mass spectra of a synthetic impurity. In tandem mass spectrometry (MS/MS) experiments using collision-induced dissociation (CID), the ion was found to behave as a [M+H]+-type precursor ion for fragmentation until MS5. The dimer was probably formed through multi-hydrogen bonds over a proton bridge. When the fragmentation occurred at the center of the bridge, the dimer was broken apart to give monomer fragments at MS6. However, no corresponding deprotonated dimer [2M-H]- was found in the negative ion ESI spectra. The dimer was extremely stable, and it could still be observed when a fragmentation voltage of up to 50 V was applied in the ionisation source. The formation of the non-covalent dimer was also found to be instrument-dependent, but independent of sample concentration. Accurate mass measurements of the [2M+H]+ and [M+H]+ ions, and their MSn product ions, provided the basis for assessing the fragmentation mechanism proposed for [2M+H]+. The fragmentation pathway was also illustrated for the deprotonated molecule [M-H]-.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号