首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin film transistors (TFTs) with zirconium‐doped indium oxide (ZrInO) channel layer were successfully fabricated on a flexible PEN substrate with process temperature of only 150 °C. The flexible ZrInO TFT exhibited excellent electrical performance with a saturation mobility of as high as 22.6 cm2 V–1 s–1, a sub‐threshold swing of 0.39 V/decade and an on/off current ratio of 2.5 × 107. The threshold voltage shifts were 1.89 V and ?1.56 V for the unpassivated flexible ZrInO TFT under positive and negative gate bias stress, respectively. In addition, the flexible ZrInO TFT was able to maintain the relatively stable performance at bending curvatures larger than 20 mm, but the off current increased apparently after bent at 10 mm. Detailed studies showed that Zr had an effect of suppress the free carrier generation without seriously distorting the In2O3 lattice. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

2.
We propose a novel and complementary method for fabrication of flexible electronics. This method is not based on conventional printing using inks, but is based on the application of a toner‐based method such as Xerox or laser printing, followed by a lamination process. The lamination method is a solvent‐free and material‐saving process that simultaneously seals the devices, and the fabricated flexible devices have structural durability against bending. We have also shown that thermal lamination has an oriented growth effect, and the electrical characteristics of flexible organic field‐effect transistors did not degrade under a bending radius of 1 mm.

  相似文献   


3.
Spin‐coated zirconium oxide films were used as a gate dielectric for low‐voltage, high performance indium zinc oxide (IZO) thin‐film transistors (TFTs). The ZrO2 films annealed at 400 °C showed a low gate leakage current density of 2 × 10–8 A/cm2 at an electric field of 2 MV/cm. This was attributed to the low impurity content and high crystalline quality. Therefore, the IZO TFTs with a soluble ZrO2 gate insulator exhibited a high field effect mobility of 23.4 cm2/V s, excellent subthreshold gate swing of 70 mV/decade and a reasonable Ion/off ratio of ~106. These TFTs operated at low voltages (~3.0 V) and showed high drain current drive capability, enabling oxide TFTs with a soluble processed high‐k dielectric for use in backplane electronics for low‐power mobile display applications. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
This study investigates the correlation between surface energy of polymer dielectrics and the film morphology, microstructure, and thin‐film transistor performance of solution‐processed 5,11‐bis(triethylsilylethynyl) anthradithiophene (TES‐ADT) films. The low surface energy polyimide (PI) dielectric induced large grains with strong X‐ray reflections for spin‐cast TES‐ADT films in comparison to high surface en‐ ergy poly(4‐vinyl phenol) (PVP) dielectric. Furthermore, thin‐film transistors based on spin‐cast TES‐ADT films on PI dielectric exhibited enhanced electrical performance, small hysteresis, and high stability under bias stress with carrier mobility as high as 0.43 cm2/Vs and a current on/off ratio of 107. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
6.
全思  郝跃  马晓华  于惠游 《中国物理 B》2011,20(1):18101-018101
This paper reports fluorine plasma treatment enhancement-mode HEMTs (high electronic mobility transistors) EHEMTs and conventional depletion-mode HEMTs DHEMTs fabricated on one wafer using separate litho-photography technology. It finds that fluorine plasma etches the AlGaN at a slow rate by capacitance--voltage measurement. Using capacitance--frequency measurement, it finds one type of trap in conventional DHEMTs with τT=(0.5-6) ms and DT= (1 - 5) × 1013 cm-2·eV-1. Two types of trap are found in fluorine plasma treatment EHEMTs, fast with τT(f)=(0.2-2) μs and slow with τT(s)=(0.5-6) ms. The density of trap states evaluated on the EHEMTs is DT(f)=(1 - 3) × 1012 cm-2·eV-1 and DT(s)=(2 - 6) × 1012 cm-2·eV-1 for the fast and slow traps, respectively. The result shows that the fluorine plasma treatment reduces the slow trap density by about one order, but introduces a new type of fast trap. The slow trap is suggested to be a surface trap, related to the gate leakage current.  相似文献   

7.
A double channel structure has been used by depositing a thin amorphous‐AlZnO (a‐AZO) layer grown by atomic layer deposition between a ZnO channel and a gate dielectric to enhance the electrical stability. The effect of the a‐AZO layer on the electrical stability of a‐AZO/ZnO thin‐film transistors (TFTs) has been investigated under positive gate bias and temperature stress test. The use of the a‐AZO layer with 5 nm thickness resulted in enhanced subthreshold swing and decreased Vth shift under positive gate bias/temperature stress. In addition, the falling rate of the oxide TFT using a‐AZO/ ZnO double channel had a larger value (0.35 eV/V) than that of pure ZnO TFT (0.24 eV/V). These results suggest that the interface trap density between dielectric and channel was reduced by inserting a‐AZO layer at the interface between the channel and the gate insulator, compared with pure ZnO channel. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We fabricated 6,13‐bis(triisopropylsilylethynyl)–pentacene (TIPS–pentacene) thin film transistors using a direct metal transfer method. Using different metals, such as Au and Ag ink, electrode patterns are formed from the relief region of the polymer mold. TIPS–pentacene TFTs using the Ag ink transfer method show a similar performance to those using the Au metal transfer method. This method has advantages over the Au metal transfer method because it does not require vacuum equipment and a dry etching process. The self‐assembled monolayer (SAM) treated device exhibits a carrier mobility of 9.5 × 10–2 cm2/V · s, and an on/off ratio of 4.6 × 104. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
10.
We report on the electrical in‐situ characterisation of organic thin film transistors under high vacuum conditions. Model devices in a bottom‐gate/bottom‐contact (coplanar) configuration are electrically characterised in‐situ, monolayer by monolayer (ML), while the organic semiconductor (OSC) is evaporated by organic molecular beam epitaxy (OMBE). Thermal SiO2 with an optional polymer interface stabilisation layer serves as the gate dielectric and pentacene is chosen as the organic semiconductor. The evolution of transistor param‐ eters is studied on a bi‐layer dielectric of a 150 nm of SiO2 and 20 nm of poly((±)endo,exo‐bicyclo[2.2.1]hept‐5‐ene‐2,3‐dicarboxylic acid, diphenylester) (PNDPE) and compared to the behaviour on a pure SiO2 dielectric. The thin layer of PNDPE, which is an intrinsically photo‐patternable organic dielectric, shows an excellent stabilisation performance, significantly reducing the calculated interface trap density at the OSC/dielectric interface up to two orders of magnitude, and thus remarkably improving the transistor performance. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

11.
The stabilities of amorphous indium‐zinc‐oxide (IZO) thin film transistors (TFTs) with back‐channel‐etch (BCE) structure are investigated. A molybdenum (Mo) source/drain electrode was deposited on an IZO layer and patterned by hydrogen peroxide (H2O2)‐based etchants. Then, after etching the Mo layer, SF6 plasma with direct plasma mode was employed and optimized to improve the bias stress stability. Scanning electron microscopy and X‐ray photoelectron spectroscopic analysis revealed that the etching residues were removed efficiently by the plasma treatment. The modified BCE‐ TFTs showed only threshold voltage shifts of 0.25 V and –0.20 V under positive/negative bias thermal stress (P/NBTS, VGS = ±30 V, VDS = 0 V and T = 60 °C) after 12 hours, respectively. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The effects of antimony (Sb) doping on solution‐processed indium oxide (InOx) thin film transistors (TFTs) were examined. The Sb‐doped InSbO TFT exhibited a high mobility, low gate swing, threshold voltage, and high ION/OFF ratio of 4.6 cm2/V s, 0.29 V/decade, 1.9 V, and 3 × 107, respectively. The gate bias and photobias stability of the InSbO TFTs were also improved by Sb doping compared to those of InOx TFTs. This improvement was attributed to the reduction of oxygen‐related defects and/or the existence of the lone‐pair s‐electron of Sb3+ in amorphous InSbO films. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

13.
孙钦军  徐征  赵谡玲  张福俊  高利岩 《中国物理 B》2011,20(1):17306-017306
The contact effect on the performances of organic thin film transistors is studied here. A C60 ultrathin layer is inserted between Al source--drain electrode and pentacene to reduce the contact resistance. By a 3 nm C60 modification, the injection barrier is lowered and the contact resistance is reduced. Thus, the field-effect mobility increases from 0.12 to 0.52 cm2/(V·s). It means that inserting a C60 ultra thin layer is a good method to improve the organic thin film transistor (OTFT) performance. The output curve is simulated by using a charge drift model. Considering the contact effect, the field effect mobility is improved to 1.15 cm2/(V·s). It indicates that further reducing the contact resistance of OTFTs should be carried out.  相似文献   

14.
15.
周建林  于军胜  于欣格  蔡欣洋 《中国物理 B》2012,21(2):27305-027305
C60 field-effect transistor (OFET) with a mobility as high as 5.17 cm2/V·s is fabricated. In our experiment, an ultrathin pentacene passivation layer on poly-(methyl methacrylate) (PMMA) insulator and a bathophenanthroline (Bphen)/Ag bilayer electrode are prepared. The OFET shows a significant enhancement of electron mobility compared with the corresponding device with a single PMMA insultor and an Ag electrode. By analysing the C60 film with atomic force microscopy and X-ray diffraction techniques, it is shown that the pentacene passivation layer can contribute to C60 film growth with the large grain size and significantly improve crystallinity. Moreover, the Bphen buffer layer can reduce the electron contact barrier from Ag electrodes to C60 film efficiently.  相似文献   

16.
17.
18.
The mobility enhancement of organic thin‐film transistors based on poly(3‐hexylthiophene) (P3HT) by incorporating gold nanorods (Au NRs) is reported. Through varying the doping concentration and surface modifier of the Au NRs in P3HT matrix, the P3HT/Au composite with 0.5 mg mL?1 pyridine‐capped Au NRs exhibits a hole mobility of 0.059 cm2 V?1 s?1, this value is seven times higher than that of pristine P3HT. This remarkable improvement of mobility originates from the enhanced crystallinity and optimized orientation of P3HT after doping with Au NRs. In addition, the appropriate surface modification can produce more‐efficient hole conduction of Au NRs.  相似文献   

19.
In this paper, an atmospheric pressure dual‐frequency (50 kHz/33 MHz) micro‐plasma jet was used to deposit organosilicon film. The discharge generated in atmospheric environment. Plasma composition was characterized by optical emission spectroscopy. With introduction of tetraethyl orthosilicate, we observed various spectra, for example Si(251.6 nm), OH(308.9 nm), C(247.8 nm), O(777.5 nm). Abundant reactive radical species which are benefit to film deposition were generated in plasma. The deposited film was characterized by scanning electron microscopy, X‐ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The film is mostly composed of Si and O. The film has Si‐O‐Si backbone with a small number of organic component (‐CHx). (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
An enhancement-mode (E-mode) AlGaN/GaN high electron mobility transistor (HEMTs) was fabricated with 15-nm AlGaN barrier layer. E-mode operation was achieved by using fluorine plasma treatment and post-gate rapid thermal annealing. The thin barrier depletion-HEMTs with a threshold voltage typically around --1.7 V, which is higher than that of the 22-nm barrier depletion-mode HEMTs (--3.5 V). Therefore, the thin barrier is emerging as an excellent candidate to realize the enhancement-mode operation. With 0.6-μ m gate length, the devices treated by fluorine plasma for 150-W RF power at 150 s exhibited a threshold voltage of 1.3 V. The maximum drain current and maximum transconductance are 300 mA/mm, and 177 mS/mm, respectively. Compared with the 22-nm barrier E-mode devices, VT of the thin barrier HEMTs is much more stable under the gate step-stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号