共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We study an array of graphene nano sheets that form a two-dimensional S=1/2 Kagome spin lattice used for quantum computation. The edge states of the graphene nano sheets are used to form quantum dots to confine electrons and perform the computation. We propose two schemes of bang-bang control to combat decoherence and realize gate operations on this array of quantum dots. It is shown that both schemes contain a great amount of information for quantum computation. The corresponding gate operations are also proposed. 相似文献
3.
We study an array of graphene nano sheets that form a two-dimensional S=1/2 Kagome spin lattice used for quantum computation.The edge states of the graphene nano sheets are used to form quantum dots to confine electrons and perform the computation.We propose two schemes of bang-bang control to combat decoherence and realize gate operations on this array of quantum dots.It is shown that both schemes contain a great amount of information for quantum computation.The corresponding gate operations are also proposed. 相似文献
4.
Graphene quantum dots (GQDs) not only have potential applications on spin qubit, but also serve as essential platforms to study the fundamental properties of Dirac fermions, such as Klein tunneling and Berry phase. By now, the study of quantum confinement in GQDs still attract much attention in condensed matter physics. In this article, we review the experimental progresses on quantum confinement in GQDs mainly by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Here, the GQDs are divided into Klein GQDs, bound-state GQDs and edge-terminated GQDs according to their different confinement strength. Based on the realization of quasi-bound states in Klein GQDs, external perpendicular magnetic field is utilized as a manipulation approach to trigger and control the novel properties by tuning Berry phase and electron–electron (e–e) interaction. The tip-induced edge-free GQDs can serve as an intuitive mean to explore the broken symmetry states at nanoscale and single-electron accuracy, which are expected to be used in studying physical properties of different two-dimensional materials. Moreover, high-spin magnetic ground states are successfully introduced in edge-terminated GQDs by designing and synthesizing triangulene zigzag nanographenes. 相似文献
5.
We address theoretically the electronic transport through graphene quantum dots with the emphasis on the transmission phase. Analytical and numerical results are presented regarding the existence – or not – of a π lapse of the transmittance phase (and, consequentially, a Fano zero in the transmittance) at the charge neutrality point. A simple universal criterium is found, the phase lapses being always present if the contact sites belong to the same sub‐lattice. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim) 相似文献
6.
利用密度泛函理论在B3LYP/6-31G(d)基组水平上研究了具有zigzag边界的石墨烯量子点,结果表明不同大小的石墨烯量子点的基态都是具有磁性的自旋三重态.其磁性一方面来源于zigzag边界上占有凸出位置的碳原子,另一方面来源于带有孤对电子的碳原子.从整体上看,除6b结构外,其他结构的能隙随着苯环数量的增加逐渐减小,而附加电荷却使体系能隙明显减小.用含时密度泛函理论(TD-DFT)对能隙为3.83 eV的由六个苯环排列成的三角形结构进行了激发态的计算,发现第十七激发态强度最大,能量为3.93 eV,对
关键词:
石墨烯量子点
磁性
能隙
激发态 相似文献
7.
8.
An approach to controlling the fluorescence of graphene quantum dots: From surface oxidation to fluorescent mechanism 下载免费PDF全文
We report a facile method of synthesizing graphene quantum dots(GQDs) with tunable emission. The as-prepared GQDs each with a uniform lateral dimension of ca. 6 nm have fine solubility and high stability. The photoluminescence mechanism is further investigated based on the surfacestructure and the photoluminescence behaviors. Based on our discussion, the green fluorescence emission can be attributed to the oxygen functional groups, which could possess broad emission bands within the π –π * gap. This work is helpful to explain the vague fluorescent mechanism of GQDs, and the reported synthetic method is useful to prepare GQDs with controllable fluorescent colors. 相似文献
9.
10.
以等离子增强化学气相沉积法制备的石墨烯作为导电沟道材料,将其与无机CsPbI_3钙钛矿量子点结合,设计并制备了石墨烯-钙钛矿量子点场效应晶体管光电探测器.研究和分析了石墨烯作为场效应晶体管的电学特性及其与钙钛矿量子点结合作为光电探测器的光电特性.结果表明,石墨烯在场效应晶体管中表现出良好的电学性质,其与钙钛矿量子点的结合对波长为400 nm的光辐射具有明显的光响应,在光强为12μW时器件光生电流最大为64μA,响应率达6.4 A·W~(-1),对应的光电导增益和探测率分别为3.7×10~4,6×10~7Jones(1 Jones=1 cm·Hz~(1/2)·W~(-1)). 相似文献
11.
N. V. Lakshmi 《Composite Interfaces》2017,24(9):861-882
Graphene decorated with graphene quantum dots (G-D-GQDs) have been successfully synthesized using solvothermal cutting of graphene oxide. The incorporation of G-D-GQDs in polyvinyledene fluoride (PVDF) matrix shows the total EMI shielding effectiveness (SET) of 31 dB at 8 GHz. The main mechanism of high EMI shielding effectiveness is reflection and absorption of EM radiation. The high absorption of EM radiation is due to tunneling of electrons from GQDs. Further, decoration of G-D-GQDs with conducting Ag nanoparticles (G-D-GQDsAg) enhances the SET value to 43 dB at 8 GHz of PVDF/G-D-GQDsAg nanocomposite, due to increase in electrical conductivity of PVDF/G-D-GQDsAg nanocomposite and enhanced dispersion of G-D-GQDsAg in PVDF matrix. The incorporation of G-D-GQDs and G-D-GQDsAg in PVDF matrix also increases the thermal stability and crystallinity of PVDF. The increase in thermal stability and crystallinity are more for PVDF/G-D-GQDsAg nanocomposite as compare to PVDF/G-D-GQDs nanocomposite, due to better dispersion of G-D-GQDsAg in PVDF matrix. Thus, PVDF/G-D-GQDsAg nanocomposite having high SET value can shield 99.9% of electromagnetic radiation in X-band range, which make it suitable for EMI shielding application for consumer electronic equipment’s. 相似文献
12.
We derive effective tight-binding model for geometrically optimized graphene quantum dots and based on it we investigate corresponding changes in their optical properties in comparison to ideal structures. We consider hexagonal and triangular dots with zigzag and armchair edges. Using density functional theory methods we show that displacement of lattice sites leads to changes in atomic distances and in consequence modifies their energy spectrum. We derive appropriate model within tight-binding method with edge-modified hopping integrals. Using group theoretical analysis, we determine allowed optical transitions and investigate oscillatory strength between bulk–bulk, bulk–edge and edge–edge transitions. We compare optical joint density of states for ideal and geometry optimized structures. We also investigate an enhanced effect of sites displacement which can be designed in artificial graphene-like nanostructures. A shift of absorption peaks is found for small structures, vanishing with increasing system size. 相似文献
13.
在20 mK的极低温下测量了石墨烯纳米带量子点的电子输运性质,观测到清晰的库仑阻塞菱形块和对应量子点激发态的电导峰.对库仑阻塞近邻电导峰间距和峰值进行了统计分析,发现其统计分布分别满足无规矩阵理论描述的Wigner-Dyson分布和Porter-Thomas分布,说明石墨烯纳米带量子点在低温下出现了量子混沌现象.还讨论了这种长方形量子点中量子混沌的可能成因.
关键词:
石墨烯纳米带
量子点
库仑阻塞
量子混沌 相似文献
14.
We study the eigenstates in quantum dots in which electrons are confined by the application of an inhomogeneous perpendicular magnetic field, focusing on the effect that the specific details of the shape of confining field has on determining these states. In contrast to the edge state picture established in studies on circular dots, we find that dots with more irregular geometries show a more complicated behavior in the interior of the dot. In particular, we find that certain states show indications of having their amplitude enhanced along particular classical periodic orbits in the interior, a phenomenon known as ‘scarring’. 相似文献
15.
16.
《Current Applied Physics》2020,20(4):538-544
Nitrogen-doped graphene quantum dots (N-GQDs) with high blue fluorescence efficiency were synthesized by the hydrothermal method from p-Phenylenediamine and p-Coumaric acid. The N-GQDs possess several superiorities, most significantly in excellent solubility and superior photostability. Besides, the as-prepared N-GQDs exhibit a uniform size distribution with a diameter of about 3.8 ± 0.5 nm. After dispersing the N-GQDs in water, the formed aqueous solution still presents a stable and homogeneous phase even after 2 months at room temperature. The N-GQD dispersion was further utilized as sensing probes for the selective detection of copper ions (Cu2+), which is realized by the photoluminescence (PL) quenching of N-GQDs after adding Cu2+. The detection limit for Cu2+ was found to be 57 nM L−1, with superior selectivity in the presence of other commonly interfering metal ions. The presented results in this study provide a facile and high-efficiency method for synthesizing N-GQDs, with ultra-high detectivity and selectivity for Cu2+ detection, offering numerous opportunities for the development of biosensing, bioimaging, environment monitoring, and others. 相似文献
17.
The electron transport in a semiconducting armchair graphene nanoribbon with line defect is theoretically investigated, by coupling it to two normal metallic leads. It is found that the line defect induces a new localized quantum state near the Dirac point, and that the coupling between this state and the leads provides a channel for the resonant tunneling. This means that such a finite‐size nanoribbon can be viewed as a quantum dot. When two line defects are present simultaneously, a coupled quantum dot forms, leading to the splitting of the conductance peaks. With these results, we propose such a structure to be a promising candidate of an electron transistor. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
18.
19.
The ground state binding energy and the average interparticle distances for a hydrogenic impurity in double quantum dots with Gaussian confinement potential are studied by the variational method. The probability density of the electron is calculated, too. The dependence of the binding energy on the impurity position is investigated for GaAs quantum dots. The result shows that the binding energy has a minimum as a function of the distance between the two quantum dots when the impurity is located at the center of one quantum dot or at the center of the edge of one quantum dot. When the impurity is located at the center of the two dots, the binding energy decreases monotonically. 相似文献
20.
Karel Kral 《Czechoslovak Journal of Physics》2006,56(1):33-40
Longitudinal optical phonons have been used to interpret the electronic energy relaxation in quantum dots and at the same
time they served as a reservoir, with which the electronic subsystem is in contact. Such a phonon subsystem is expected to
be passive, namely, in a long-time limit the whole system should be able to achieve such a stationary state, in which statistical
distributions of both subsystems do not change in time. We pay attention to this property of the LO phonon bath. We show the
passivity property of the so far used approximations to electronic transport in quantum dots. Also we show a way how to improve
the passivity of LO phonon bath using canonical Lang-Firsov transformation.
Presented at the X-th Symposium on Suface Physics, Prague, Czech Republic, July 11–15, 2005. 相似文献